Review

Jeju Journal of Island Sciences. 30 April 2024. 59-74
https://doi.org/10.23264/JJIS.2024.1.1.059

ABSTRACT


MAIN

  • History of Nomenclatural Background

  • Taxonomy of the Genus Laurencia

  • Diversity and Distribution in East Asia and Southeast Asia regions

  • Molecular Phylogenetic Research

  • Life History

  • Ecological Role and Utilization

  • Declaration of Competing Interest

History of Nomenclatural Background

The red algal genus Laurencia J.V. Lamoroux belongs to the family Rhodomelaceae (Ceramiales, Rhodophyta). The term “Laurencia” was initially introduced in 1813 by the French botanist J.V. Lamouroux to characterize a diverse group of eight red seaweeds within the order Floridées. Lamouroux’s classification was based on the algae’s purple to reddish coloration and the occurrence of ‘fructification’ (cystocarps) at the ends of both branches and branchlets. He chose the name in honor of his friend, a Navy official and natural scientist Mr. de La Laurencie. Although Lamouroux (1813) did not designate a type for the genus, Schmitz (1889) addressed this issue later by establishing the tribe Laurenciae and formally assigning the type species Laurencia obtusa (Hudson) Lamouroux to the genus.

For decades, the taxonomy of Laurencia has been based on its external morphology. J. Agardh (1876) first proposed subdividing the genus into four sections: Filiformes, Papillosae, Obtusae, and Pinnatifidae. Subsequently, Kylin (1923) provided a more detailed description of the reproductive structures of some species. Yamada (1931) mainly described anatomical characteristics, such as the presence of a projection of epidermal cells near the end of the branchlets, the shape and arrangement of epidermal cells in the transverse section, and the presence or absence of lenticular thickenings in medullary cells. On this basis, Yamada proposed four sections of this genus, Pinnatifidae, according to the section of J. Agardh (section with a clearly compressed frond and not palisade-like appearance of epidermal cells in the transverse section) and three new sections: Palisadae (a section of cylindrical species with palisade-like epidermal cells in the transverse section and absence of lenticular thickenings), Forsterianae (a section of cylindrical or slightly compressed species with epidermal cells that are not palisade-like and with abundant lenticular thickening), and Cartilagineae (a section of cylindrical or slightly compressed species with non-palisade-like epidermal cells without lenticular thickenings).

Over several years, this genus has undergone several nomenclatural changes (Table 1), and until recently, the Laurencia complex comprised eight genera: Laurencia sensu stricto J.V. Lamouroux, Osmundea Stackhouse, Corynecladia J. Agardh, Chondrophycus (Tokida and Saitoi) Garbary and Harper, Palisada (Yamada) K.W. Nam, Yuzurua (K.W. Nam) Martin-Lescanne, Laurenciella Cassano, Gil-Rodríguez, Senties, Diaz-Larrea, M.C. Oliveira and M.T. Fujii, and Ohelopapa F. Rousseau, Martin-Lescanne, Payri and L. LeGall.

Table 1.

The nomenclatural history of Laurencia complex

References Genus Subg
enus
Section Note
Lamouroux 1813Laurencia Erected genus Laurencia (including 8 species, most of which were transferred from Fucus) based on the presence
of cystocarps at the end of the branches and branchlets.
Stackhouse 1816Pinnatifida Genus Pinnatifida was proposed (with Pinnatifida vulgaris as the type species) with the description: fronds
gelatinous, bi-or tri-pinnate; branch obtuse; the seeds are immersed in the tips.
Schmitz 1889Laurencia Designated L. obtusa Lamouroux as the type species of the genus Laurencia
Agardh 1863,
Agardh 1879
Laurencia Pinnatifidae;
Filiformes;
Papillosae;
Obtusae
Placed genus Pinnatifida Stackhouse as a section in genus Laurencia with other three sections based primarily on
branching pattern and thallus compression.
Yamada 1931Laurencia Pinnatifidae;
Palisadae;
Fosterianae;
Cartilagineae
Regroup Agardh’s sections, with section Pinnatifidae being the only remaining, and added three new sections
based on the palisade formation of the cells, lenticular thickenings, and thallus compression. This was also the
first study to include reproductive features.
Saito 1967LaurenciaLaurencia Laurencia;
Pinnatifidae;
Fosterianae
The genus is divided into subgenera, Laurencia and Chondrophycus, based on the arrangement of tetrasporangia
and the presence of secondary pit connections between cortical cells in the longitudinal section.
Chondrophycus Chondrophycus;
Palisadae
Saito & Womersley 1974LaurenciaLaurencia Laurencia; Planae Introduced a new section, Planae, based on the removal of the lenticular thickenings as a significant
morphological character and removed the sections of Fosterianae and Pinnatifidae.
Chondrophycus Chondrophycus;
Palisadae
Nam et al. 1994Laurencia The genus Osmundea was proposed by Stackhouse in 1809 based on O. expansa (later determined to be
synonymous with L. osmuda). Laurencia was conserved over Osmundea due to the popularity of the name.
Then, Nam Resurrected genus Osmundea with O. osmunda as the type species.
Osmundea The resurrection of Osmundea as a genus based on the origin of spermatangial branches and the origin of tetrasporangia.
Garbary and Harper 1998LaurenciaChondrophycus was raised to a genus based on the number of pericentral cells, the presence or absence of
secondary pit connections within epidermal cells, and the origin of tetrasporangia. In total, three genera
(Laurencia, Chondrophycus, Osmundea) were recognized.
Osmundea
Chondrophycus
Nam 1999Laurencia Proposed four subgenera within Chondrophycus based on morphological characters, including the presence of
secondary pit connections, the number of sterile pericentral cells in a tetrasporangial axial segment, and the
arrangement of tetrasporangia.
Osmundea
Chondrophycus
Chondrophycus
Kangjaewonia
Palisada Palisadae,
Papillosae
Yuzurua Parvipapillatae;
Yuzurua
Nam 2006,
Nam 2007
Laurencia; Osmundea; Chondrophycus; Palisada Separated Palisada as a new genus. According to the previous study, subgenera Yuzurua and Palisada were
merged to the new genus Palisada, and subegenera Chondrophycus and Kangjaewonii to genus Chondrophycus.
Martin-Lescanne et al. 2010Laurencia; Osmundea; Chondrophycus; Palisada; Yuzurua Resurrected and elevated subgenus Yuzurua to the generic rank, with Y. poiteaui (basionym Ch. poiteaui)
designated as the type species, based on the based on the molecular analysis (rbcL).
Cassano et al. 2012cLaurencia; Osmundea; Chondrophycus; Palisada; Yuzurua; Laurenciella Established the new genus Laurenciella, with La. marilzae (basionym L. marilzae) designated as the type species
based on the molecular analysis (rbcL).
Metti et al. 2015Laurencia; Osmundea; Chondrophycus; Palisada; Yuzurua; Laurenciella; Coronaphycus Established the new genus Coronaphycus with Coronaphycus elatus (basionym L. elata) designated as the type
species based on the molecular analysis (rbcL) and the presence of a secondary cortex in Coronaphycus.
Rousseau et al. 2017Laurencia; Osmundea; Chondrophycus; Palisada; Yuzurua; Laurenciella; Coronaphycus; Ohelopapa Establish the new genus Ohelopapa, with O. flexilis (basionym L. flexilis) as the type species based on the
molecular analyses (rbcL and COI-5P) and morphological characteristics: four pericentral cells per axial cells;
however, it lacks of a corps en cerise in cortical cells and secondary pit connections between cortical cells.
Cassano et al. 2019Laurencia; Osmundea; Chondrophycus; Palisada; Yuzurua; Laurenciella; Ohelopapa; Corynecladia Proposed the emendation of generic delineation of Corynecladia with C. clavata as the type species, including
the newly genus Coronaphycus based on the molecular analysis (rbcL), specimens identified as L. clavata
(which was previously belonged to Corynecladia, a genus proposed by Agardh in 1876) were grouped with
seqeunces of Coronaphycus elatus and Coronaphycus novus. Due to priority over Coronaphycus, Corynecladia
was selected as the valid genus, encompassing three species: C. clavata, C. elata, and C, nova.

Osmundea was originally proposed by Stackhouse (1809) but was recognized and resurrected as a genus within Laurencia complex decades later by Nam et al. (1994) based on the number of pericentral cells per axial cell (two, rather than four in Laurencia s.s.), the origin of tetrasporangia, the origin and branching of the spermatangial branch, the shape of apical spermatangial pits, and the alignment of presporangial cover cells. Garbary and Harper (1998) elevated the subgenus Chondrophycus as a sister taxon to Osmundea because of two pericentral cells per axial cell and different from Laurencia s.s. by the absence of secondary pit connections between adjacent cortical cells. A corps en cerise was also diagnosed in the study of Chondrophycus, however, because this structure has only been observed in living materials, this characteristic was not useful for generic diagnostics at the time. Based on Yamada’s (1931) section Palisadae, many species that were previously nested within Chondrophycus have been transferred to Palisada, a genus proposed and validated by Nam (2007), with tetrasporangial development being unique to Chondrophycus. The five characteristics that separate Palisada from other genera in the Laurencia complex are the first pericentral cell position compared to the trichoblast, the second pericentral cell’s fertility, spermatangial branch patterns during formation on trichoblasts, auxiliary cell timing, and the number of pericentral cells of the procarp-bearing segment (Nam 2006).

The four genera accepted in the Laurencia complex as mentioned above were all established based on morphological characteristics, while early molecular research also recognized other genera within the complex. Yuzurua segregated from Palisada and was the first genus within the complex to be identified based on molecular evidence (rbcL). It is morphologically different from Palisada because of the absence of palisade-like cells and the lack of secondary pit connections in cortical cells. The second genus to be identified by molecular evidence was Laurenciella (rbcL) (Cassano et al. 2012b). This genus is morphologically cryptic compared to its sister genus, Laurencia s.s. Metti et al. (2015) established the genus Coronaphycus using molecular (rbcL) and morphological features, but it was later determined to be conspecific with Cornynecladia J. Agardh 1876, which had priority (Cassano et al. 2019). The last genus to be established was Ohelopapa, which was recognized based on both molecular analysis (rbcL and COI-5P) and morphological characteristics, i.e., four pericentral cells per axial cell, however, it lacks a corps en cerise in cortical cells and secondary pit connections between cortical cells (Rousseau et al. 2017). The corps en cerise is a refraction-specific intracellular organelle that is used as the main storage site for halogenated compounds in the Laurencia complex (Fujii et al. 2012). The corps en cerise has been found in Laurencia s.s. (Masuda et al. 1996, Cassano et al. 2012a, Francis et al. 2017, Metti 2017, Metti 2022) and Laurenciella (Gil-Rodríguez et al. 2009 and Rocha-Jorge et al. 2010 as Laurencia marilzae Gil-Rodríguez, Senties et M.T. Fujii; Collado-Vides et al. 2018), while other genera within the complex do not possess this structure. It has recently been used as a generic characteristic for identification within the Laurencia complex.

Taxonomy of the Genus Laurencia

The taxonomy of the genus has undergone significant revision, with emphasis placed on characteristics such as color, presence or absence of secondary pit connections between cortical cells, arrangement of tetrasporangia, presence or absence of lenticular thickenings, projection of cortical cells, and presence of a corps en cerise.

Color is considered a characteristic for identifying species within the genus Laurencia. In a study by Gil-Rodríguez and Haroun (1992), Laurencia viridis Gil-Rodríguez and Haroun was compared with other Laurencia species from the Canaries (i.e., L. obtusa, L. majuscula, L. minuta, and L. tenera) among which only L. viridis has a bright green color. It was then compared with other green species of Laurencia from other parts of the world: i.e., L. intricata, L. flexilis, L. nidifica, L. “green”, L. okamurai, and L. intermedia. Although Garbary and Harper (1998) did not include color as a diagnostic characteristic of Laurencia, they proposed that it is a useful characteristic when color differences are examined with regard to particular species complexes.

Saito (1967) highlighted the presence of a secondary pit-connection among superficial cortical cells (Fig. 1A) as a distinctive feature for identifying the Laurencia complex; however, this feature was absent in Chondrophycus. Another key criterion for species differentiation within Laurencia is the presence or absence of lenticular thickening on the medullary cells (Fig. 1B). This characteristic has been recognized as species-specific, as illustrated by the occurrence of lenticular thickening in Laurencia forsteri (Mertens ex Turner) Greville (Saito and Womersley 1974). Garbary and Harper (1998) suggested the inclusion of these characteristics in morphological studies of genera and species within the Laurencia complex. The presence or absence of projecting cells at branch apices (Fig. 1C) is another valuable characteristic of Laurencia. Several species can be identified by conspicuously projecting superficial cells, through which they can be differentiated from related species, including Laurencia moretonensis A.B. Cribb which was distinguished from Laurencia pannosa Zanardini by having no projecting cells near the apical cells (Cribb 1958), Laurencia pinnata Yamada, which differs from Laurencia mariannensis Yamada by the presence of projecting cells (Yamada 1931), and Laurencia saitoi Perestenko, which differs from L. obtusa also by having projecting cells (Masuda & Abe 1993).

https://cdn.apub.kr/journalsite/sites/jjis/2024-001-01/N0560010105/images/jjis_01_01_05_F1.jpg
Fig. 1.

Characteristics of Laurencia. (A) Secondary pit connections between cortical cells in longitudinal section (arrows), (B) Presence of lenticular thickenings on medullary cells (arrow), (C) Projecting cells near the apical cells in longitudinal section (arrow), (D) Presence of single corps en cerise per medullary cells in surface view (arrows). Scale bars: (A-D) 20 mm.

Laurencia s.s. stands out by having distinct intracellular organelles known as “corps en cerise” (Fig. 1D), characterized by their unique refractive properties, however, the genus Laurenciella shares some morphological features with Laurencia, including the presence of a corps en cerise. The crucial point of differentiation between the two genera is the presence of a corps en cerise in all cells (cortical, medullary, pericentral, axial, and trichoblast cells) in Laurenciella marilzae (Gil-Rodríguez, Senties, Diaz-Larrea, Cassano & M.T. Fujii) Gil-Rodríguez, Senties, Diaz-Larrea, Cassano & M.T. Fujii (Gil-Rodríguez et al. 2009). The presence or absence and number of corps en cerises per cell are valuable diagnostic characteristics at the species level (Masuda 1997), as observed in Laurencia brongniartii J. Agardh, which is distinguished from L. pinnata by the presence of two or three corps en cerises per cell, in contrast to the single corps en cerise in L. pinnata (Abe et al. 1998). Despite its importance in characterizing Laurencia species, this feature is only evident in very young plants (Masuda et al. 1997) and remains undetected in liquid-preserved and dried specimens, limiting such observations to living specimens (McDermid 1988).

Taxonomic studies of the Laurencia complex have traditionally relied on morphological characteristics such as branching patterns, tetrasporangial structures, and reproductive organs, however, this approach has some limitations with regard to morphological plasticity and convergent evolution within the genus. Laurencia has been reported to produce more than 250 diverse compounds (Abe and Masuda 1998) and related or unrelated sets of metabolites in different populations. Based on many morphologically similar but chemically distinct taxa, chemotaxonomy has been used as a tool to identify Laurencia (Abe et al. 1975, Fenical and Norris 1975, Masuda et al. 1996, Masuda et al. 2002).

Diversity and Distribution in East Asia and Southeast Asia regions

The genus Laurencia currently includes 144 taxonomically accepted species found globally in temperate to tropical waters, and inhabiting littoral to sublittoral areas (Guiry and Guiry 2023). Most of the species within this genus have been reported as type localities in Australia (13 species), South Africa (13 species), Mexico (11 species), Japan (8 species), and California (7 species). In accordance with McDermid (1988), the distribution of Laurencia species is concentrated in the Southern Hemisphere (Fig. 2).

https://cdn.apub.kr/journalsite/sites/jjis/2024-001-01/N0560010105/images/jjis_01_01_05_F2.jpg
Fig. 2.

Distribution of Laurencia species in the Asia North-Pacific region with the ocean current informations.

Checklists were compiled for the Asia North-Pacific region: Korea, Japan, and China in East Asia; and Indonesia, Malaysia, Myanmar, Philippines, Thailand, and Vietnam in Southeast Asia (Table 2). A total of 47 Laurencia species were reported in the East Asia and Southeast Asia regiona, with 14 species recorded in Korea (Nam 2011), 18 species in Japan (Yoshida et al. 2015), 20 species in China (Liu 2008), 17 species in Indonesia (Atmadja and van Reine 2012), 9 species in Malaysia (Phang et al. 2016), 4 species in Myanmar (Soe-Htun et al. 2021), 22 species in Philippines (Lastimoso and Santiañez 2021), 1 species in Thailand (Tsutsui et al. 2012), and 22 species in Vietnam (Nguyen et al. 2023) (Fig. 3).

Table 2.

Checklist of Laurencia from the Asia North-Pacific with support of morphological and molecular observations

Taxa No Type locality Korea1 Japan2 China3 Indonesia4 Malaysia5 Myanmar6 Philippines7 Thailand7 Vietnam9 DNA data References
1 Laurencia botryoides (C.Agardh) Gaillon Australia na na
2 Laurencia brachyclados Pilger West Africa + 23S rRNA,
28S rRNA, COI
Sherwood et al. 2010
3 Laurencia brongniartii J.Agardh Martinique + + + + rbcL Fujii et al. 2006, Gil-Rodríguez et al. 2010, Metti et al. 2015
4 Laurencia caduciramulosa Masuda & S.Kawaguchi Vietnam + + + rbcL Cassano et al. 2012c, Collado-Vides et al. 2014
5 Laurencia calliclada Masuda Vietnam + + na na
6 Laurencia caraibica P.C.Silva Bahamas + rbcL Gil-Rodríguez et al. 2009
7 Laurencia chinensis C.K.Tseng China + + cox1 Unpublished
8 Laurencia chondrioides Børgesen Caribbean, USA + na na
9 Laurencia composita Yamada Japan + + + + + na na
10 Laurencia corymbosa J.Agardh South Africa + rbcL Francis et al. 2017*
11 Laurencia decumbens Kützing New Caledonia + + + + + 23S rRNA,
28S rRNA
Sherwood et al. 2010
12 Laurencia dendroidea J.Agardh Brazil + + + + + + + rbcL Fujii et al. 2006*, Cassano et al. 2012c*,
Machín-Sánchez et al. 2014, Popolizio et al. 2022
COI Machín-Sánchez et al. 2014, Popolizio et al. 2022
ITS Popolizio et al. 2022
13 Laurencia distichophylla J.Agardh New Zealand + na na
14 Laurencia filiformis (C.Agardh) Montagne Australia + + + + SSU Phillips et al. 2000
rbcL Cassano et al. 2019
15 Laurencia forsteri (Mertens ex Turner) Greville New Zealand + na na
16 Laurencia galtsoffii M.Howe Hawaii + + 23S rRNA,
28S rRNA, COI
Sherwood et al. 2010*
17 Laurencia glandulifera (Kützing) Kützing Italy + + + + na na
18 Laurencia glomerata (Kützing) Kützing South Africa + rbcL Díaz‐Tapia et al. 2017, Francis et al. 2017*, Mshiywa et al. 2023
19 Laurencia hamata Yamada Japan + + na na
20 Laurencia heteroclada Harvey Australia + rbcL, COI Metti 2022*
21 Laurencia hongkongensis C.K.Tseng, Chang,
E.Z.Xia & B.M.Xia
Hong Kong + na na
22 Laurencia intercalaris K.W.Nam Korea + na na
23 Laurencia intricata J.V.Lamouroux Antilles + + + + + + rbcL Fujii et al. 2006, Cassano et al. 2009, Gil-Rodríguez et al. 2009,
Cassano et al. 2012a*, Collado-Vides et al. 2018, Popolizio et al. 2022
COI Popolizio et al. 2022
24 Laurencia japonensis T.Abe & Masuda Japan + na na
25 Laurencia lageniformis Masuda & Suzuki Vietnam + + na na
26 Laurencia laxa (R.Brown ex Turner) Gaillon South Africa + na na
27 Laurencia mariannensis Yamada Saipan + + + + + rbcL Martin-Lescanne et al. 2010
28 Laurencia microcladia Kützing West Indies + rbcL, COI, ITS Popolizio et al. 2022
29 Laurencia nangii Masuda Vietnam + na na
30 Laurencia natalensis Kylin South Africa + rbcL Fujii et al. 2006, Francis et al. 2017*, Garcia-Soto 2017, Kundu 2022
COI Garcia-Soto 2017, Kundu 2022
31 Laurencia nidifica J.Agardh Hawaii + + + + + + SSU, LSU, cox1 Kurihara et al. 2010*
23S rRNA,
28S rRNA, COI
Sherwood et al. 2010*
32 Laurencia nipponica Yamada Japan + + + + SSU, LSU, cox1 Kurihara et al. 2010*
33 Laurencia obtusa (Hudson) J.V.Lamouroux England, UK + + + + + + + + rbcL Nam et al. 2000, Fujii et al. 2006, Rousseau et al. 2017, Preuss et al. 2023
COI Rousseau et al. 2017
34 Laurencia okamurae Yamada Japan + + + + na na
35 Laurencia omaezakiana Masuda Japan + + na na
36 Laurencia pannosa Zanardini Malaysia + + na na
37 Laurencia pinnata Yamada Japan + + + + + + + + na na
38 Laurencia saitoi Perestenko Russia + + COI Saunders 2014
39 Laurencia silvae J.F.Zhang & B.M.Xia China + + na na
40 Laurencia similis K.W.Nam & Y.Saito Australia + + na na
41 Laurencia snackeyi (Weber Bosse) M.Masuda Indonesia + + + 18S rRNA, cox1 Díaz‐Tapia et al. 2017
42 Laurencia subsimplex C.K.Tseng Hong Kong + + na na
43 Laurencia succulenta K.W.Nam Korea + na na
44 Laurencia tenera C.K.Tseng Hong Kong + + 28S rRNA Sherwood et al. 2010
45 Laurencia tristicha C.K.Tseng, C.F.Chang,
E.Z.Xia & B.M.Xia
Hong Kong + na na
46 Laurencia tropica Yamada Saipan + + + + + na na
47 Laurencia venusta Yamada Japan + + + rbcL Díaz-Larrea et al. 2007, Metti et al. 2015

https://cdn.apub.kr/journalsite/sites/jjis/2024-001-01/N0560010105/images/jjis_01_01_05_F3.jpg
Fig. 3.

The maximum likelihood (ML) phylogenetic tree based on rbcL gene of Laurencia (Popolizio et al. 2022).

Both L. obtusa (type locality: England) and L. pinnata (type locality: Japan) are widely distributed, covering most areas except Singapore and Thailand. The distribution of marine species can also be driven by ocean currents (Li et al. 2017), and the wide distribution of Laurencia in Asia North-Pacific waters likely influenced by the North-South-Equatorial Current that runs along the Pacific Ocean and the Kuroshio Current, which could influence long-distal dispersal of multiple marine species from south to north (Yamasaki et al. 2014).

In contrast, Laurencia hongkonensis C.K. Tseng, Chang, E.Z. Xia & B.M. Mia (type locality: Hong Kong) and Laurencia tristicha C.K. Tseng, C.F. Chang, E.Z. Xia & B.M. Mia (type locality: Hong Kong) exhibited endemism, and were found exclusively in their respective localities. This endemism was further supported by Tseng (1983), who found that these two species were reported only in China (Hong Kong). Additionally, Laurencia intercalaris Nam (type locality: Korea) and Laurencia succulenta Nam (type locality: Korea) are restricted to Korea, whereas Laurencia japonensis T. Abe & Masuda (type locality: Japan) are endemic to Japan.

Molecular Phylogenetic Research

The notable morphological plasticity of individuals, the challenge of observing specific vegetative or reproductive features, and the presence of inconsistent and incomplete species descriptions have contributed to the considerable ambiguity in the identification, classification, and nomenclature of organisms allegedly comprising this complex. Recent DNA barcoding and phylogenetic analyses have enabled researchers to reconstruct the evolutionary history of Laurencia with remarkable accuracy. Over the past two decades, the taxonomy of the Laurencia complex has markedly advanced through integrated application of anatomical and molecular markers on a global scale.

Molecular studies on the Laurencia complex were cconducted using various genetic markers, including SSU (Phillips et al. 2000, Kurihara et al. 2010, Díaz-Tapia et al. 2017, Ortega et al. 2020), LSU (Kurihara et al. 2010, Sherwood et al. 2010, Du et al. 2015, Rousseau et al. 2017), UPA (Sherwood et al. 2010, Du et al. 2015), and ITS (Lewis et al. 2008, Popolizio et al. 2022). Although several mmarkers have been used in these studies, molecular analyses of the Laurencia complex have predominantly relied on the plastid marker rbcL and the mitochondrial marker COI. Molecular phylogenetic studies have led to the identification and reinstatement of a cconsiderable number of new or previously misidentified species (Cassano et al. 2012a, Metti et al. 2015, Francis et al. 2017, Cassano et al. 2019, Popolizio et al. 2022).

Within the Laurencia complex, Yuzurua, Laurenciella, Ohelopapa, and Corynecladia have been identified using molecular analyses (Martin-Lescanne et al. 2010, Cassano et al. 2012c, Rousseau et al. 2017, Cassano et al. 2019). The identifiaction of these genera relied on rbcL gene, in additional to the COI-5P gene, specifically with regard to Ohelopapa. These molecular insights have contributed to a better understanding of the diversity within the Laurencia complex, highlighting the importance of molecular markers for unraveling the evolutionary relationships and taxonomy of these algae.

Through molecular analyses, Popolizio et al. (2022) proposed two new species, Chondrophycus planiparvus Popolizio, C.W. Schneider & C.E. Lane and Laurenciella namii Popolizio, C.W. Schneider & C.E. Lane (Fig. 4). Remarkably, L. namii shows genetic differences from other species in the genus Laurenciella. Additionally, the study supported the recognition of two species, L. dendroidea and L. catarinensis Cordeiro-Marino & M.T. Fujii, which has historically been identified as L. obtusa in Bermuda.

https://cdn.apub.kr/journalsite/sites/jjis/2024-001-01/N0560010105/images/jjis_01_01_05_F4.jpg
Fig. 4.

The neighbour-joining (NJ) phylogenetic tree based on COI-5P gene of Laurencia (Metti 2022).

Molecular studies based on rbcL gene have revealed that Laurencia majuscula (Harvey) A.H.S.Lucas from Australia is conspecific to Laurencia dendroidea J. Agardh from Brazil, despite their disjunct-type localities, in which L. dendroidea has priority (Metti et al. 2013). Following a study on L. majuscula, its non-typical variety L. majuscula var. elegans (A.H.S.Lucas) Saito & Womersley, formed a separate, well-supported clade from L. dendroidea based on COI-5P and rbcL sequences. It has since been reinstated at the species level as Laurencia elegans A.H.S. Lucas (Metti 2017). Recently, Metti (2022) reported a significant molecular distance between L. heteroclada f. decussata and L. heteroclada, supporting the separation of L. heteroclada f. decussata into a new species, Laurencia decussata (Fig. 5).

https://cdn.apub.kr/journalsite/sites/jjis/2024-001-01/N0560010105/images/jjis_01_01_05_F5.jpg
Fig. 5.

The tri-phasic isomorphic life cycle of Laurencia.

Until recently, most molecular studies on Laurencia were conducted in the Atlantic Ocean, Northeast Pacific, and Southwest Pacific, whereas very limited research has been conducted in the Asia Pacific (Table 3). Several Laurencia species reported have type localities in the Asia-Pacific region, including Japan, Hong Kong, Korea, and Vietnam, however, studies on this taxon are primarily confined to morphological analyses, with limited phylogenetic studies to date. Kurihara et al (2010) conducted molecular phylogenetic studies focused on red algal parasites, including Janczewskia, parasitic red algae of Laurencia collected from the Hawaiian Islands, Japan, and Russia. Since then, there have been no updated molecular phylogenetic studies of Laurencia in the Asia-Pacific region.

Table 3.

Molecular studies of Laurencia complex conducted to date

Taxa Markers Region References
L. glomeratarbcL South Africa Mshiywa et al. 2023
L. tasmanica, L. obtusarbcL Australia; Spain Preuss et al. 2023
L. obtusa, L. catarinensis cox1 Spain
L. microcladia, L. intricata, L. dendroidea, L. catarinensis rbcL Bermuda; USA Popolizio et al. 2022
L. microcladia, L. intricata,, L. dendroidea, L. catarinensis COI
L. microcladia, L. dendroidea, L. catarinensis ITS
L. decussata*, L. heteroclada rbcL Australia Metti 2022
L. decussata, L. heteroclada, L. elegans COI
L. flexuosarbcL India Kundu 2022
L. natalensis, L. flexuosa COI
L. dendroidea, La. marilzae COI; rbcL Australia; Italy Serio et al. 2020
L. obtusa SSU Saudi Arabia Ortega et al. 2020
L. digitata, Ch. anabeliaerbcL Venezuela Cassano et al. 2020
L. mutuae*rbcL; COI Mexico Sentíes et al. 2019
L. filiformis, L. longiramea*, Corynecladia clavata^ (as L. clavata) rbcL Australia; Brazil Cassano et al. 2019
L. karachiana*rbcL; COI Pakistan Bibi et al. 2019
L. intricata, Laurenciella mayaimii^, Laurenciella sp. rbcL USA Collado-Vides et al. 2018
L. obtusa, L. dendroidea (as L. cf. majuscula), Laurencia sp. (as L. cf. brongniartii,
L. cf. calliptera, L. cf. mariannensis, L. cf. nidifica), Laurencia sp. (as L. cf. natalensis), Laurencia sp. (as L. cf. flexuosa), La. marilzae, Ohelopapa flexilis^, O. oederi,
O. hybrida, O. osmunda, Palisada sp. (as P. cf. parvipapillata, P. cf. robusta), P. crustiformans*
rbcL; COI; LSU Croatia; France;
New Caledonia; Oman;
South Africa, Sri Lanka;
Tahiti; USA
Rousseau et al. 2017
L. natalensis, L. dendroidea, L. caraibicarbcL Venezuela Garcia-Soto 2017
L. natalensis, L. dendroidea COI Venezuela
L. dichotoma*, L. alfredensis*, L. stegengae*, L. sodwaniensis*, L. pumila var. dehoopiensis*, L. digitata*, L. multiclavata*, L. natalensis, L. pumila, L. glomerata, L. flexuosa, L. complanata, L. corymbosa, L. cf. brongniartii, Chondrophycus sp., Palisada sp., La. marilzaerbcL South Africa Francis et al. 2017
L. snackeyi, Palisada sp. 18S rRNA Australia Díaz-Tapia et al. 2017
L. glomerata, L. tasmanica, Laurenciella sp., Corynecladia clavata (as L. clavata) rbcL Australia; South Africa
L. snackeyi, Palisada sp. cox1 Australia
L. venusta, L. brongniartii, Chondrophycus sp., Corynecladia elata (as Coronaphycus elatus^), Corynecladia nova (as Ccoronaphycus novus) rbcL Australia Metti et al. 2015
L. obtusa, L. nipponica, C. intermedius UPA/23S rRNA;
LSU
China Du et al. 2015
L. pacifica, L. saitoi COI USA Saunders 2014
L. pyramidalis, L. viridis, L. dendroidea, L. catarinensis, La. marilzaerbcL Spain; France;
Portugal
Machín-Sánchez et al. 2014
L. pyramidalis, L. viridis, L. dendroidea, L. catarinensis, O. pinnatifida, P. flagellifera, P. perforata, La. marilzae COI Spain; France;
Portugal
L. caduciramulosarbcL USA Collado-Vides et al. 2014
L. aldingensis, L. caduciramulosa, O. truncatarbcL Brazil; Spain Cassano et al. 2012c
L. oliveiranarbcL Brazil Cassano et al. 2012b
L. dendroidea, L. intricata, P. flagellifera, P. furcatarbcL Brazil; Spain; Cuba Cassano et al. 2012a
L. mcdermidiae, L. nidifica, L. galtsoffii, L. brachyclados, L. dendroidea (as L. majuscula), Laurencia sp., P. yamadana, P. cartilaginea, P. parvipapillata, P. crustiformans
(as L. "crustiformans), C. cf. undulatus, Chondrophycus sp.
UPA/23S rRNA;
LSU; COI
Hawaii Sherwood et al. 2010
L. caduciramulosarbcL Cuba Sentíes et al. 2010
L. pyramidalis, L. mariannensis, O. hybrida, O. osmundarbcL UK; New Caledonia;
France
Martin-Lescanne et al. 2010
L. brongniartii, L. intricata, P. flagelliferarbcL Australia; Mexico;
Spain
Gil-Rodríguez et al. 2010
L. mcdermidiae, L. nidifica, L. nipponica, L. dendroidea (as L. majuscula), Laurencia sp. 1, Laurencia sp. 2,
Laurencia sp. 3, Laurencia sp. 4, Laurencia sp. 5, Laurencia sp. 6, Laurencia sp. 7
SSU;
LSU;
cox1
USA; Japan; Russia Kurihara et al. 2010
Laurenciella marilzae (as L. marilzae)*, L. caraibica, L. intricata, L. viridis, L. dendroidea (as L. majuscula),
Laurencia sp., Chondrophycus sp., O. pinnatifida, P. perforata (as L. papillosa)
rbcL Mexico; Spain Gil-Rodríguez et al. 2009
P. perforata, L. intricatarbcL Brazil; Mexico;
Spain
Cassano et al. 2009
L. viridis ITS1;
ITS2;
rbcL
Spain Lewis et al. 2008
L. venustarbcL Mexico Díaz-Larrea et al. 2007
L. pacifica, L. natalensis, L. filiformis, L. flexuosa, L. complanata, L. brongniartii, L. intricata, L. obtusa, L. dendroidea, L. translucidarbcL Brazil; Mexico;
Guadeloupe; USA;
Venezuela;
South Africa; Taiwan
Fujii et al. 2006
L. filiformis 18S rRNA Australia Phillips et al. 2000
L. obtusarbcL Ireland Nam et al. 2000

*new species; ^type species of a new genus.

An initial study of the Laurencia complex based on a taxon-rich dataset (rbcL) and a character-rich dataset (COI-5P + rbcL + LSU) revealed diverse taxonomy at the genus level within the Laurencia complex, which also led to the establishment of the Ohelopapa genus, previously identified as Laurencia (Rousseau et al. 2017). This confirms that molecular-assisted studies are an effective approach for precisely determining the taxonomic positions of some members of the Laurencia complex. Recent studies on the plastid genome of Laurencia by Verbruggen and Costa (2015) (L. snackeyi) and Preuss et al. (2023) (L. obtusa, L. catarinenis, Co. elata, and some new species identified as Janckzewskia) have marked significant advancements and hold the potential to address the challenges associated with unresolved phylogenetic relationships within the genus Laurencia.

Life History

The life cycles of Florideophiceae can be heteromorphic, meaning that they differ from one another, or isomorphic, meaning that they are identical (Hawkes 1990); however, most red algae exhibit the same triphasic pattern (Yoon et al. 2010). The genus Laurencia s.s. reproduces sexually and has typical triphasic isomorphic life histories involving haploid sexual gametophytes, diploid carposporophytes that develop on female gametophytes, and free-living diploid tetrasporophytes that have similar or identical form phases (Bleckwenn et al. 2003).

During the life cycle of Laurencia s.s. (Fig. 5), the spermatangial stichidia release male gametes, or spermatids. Subsequently, male gametes or spermatia fuse with female gametes or carpogonia. Carpospores are released after male gametes or spermatia fuse with female gametes or carpogonia. Upon germination, carpospores develop into tetrasporophytes. The tetraspores are then released and germinate, giving rise to both male and female gametophytes.

Ecological Role and Utilization

Laurencia plays an ecological role in the ecosystem, serving as a habitat and refuge for other marine organisms, such as being a host for parasitic algae including Erythrocystis and Janczewskia (Kurihara et al. 2010). Laurencia is also a habitat for the young juvenile spiny lobster Panulirus argus, where juveniles use the algal microhabitat by successive settlement before moving to the substrate for attachment (Marx and Herrnkind 1985). Crabs of Microphrys bicornutus not only use L. papillosa as food but also as camouflage (Kilar and Lou 1986), while the conch species Strombus gigas feeds on Laurencia, utilizing it not only as a food source but also for the supply of chemical cues that trigger the metamorphosis of its larvae (Boettcher and Targett 1996). Among the invertebrates that feed on Laurencia, sea hares belonging to the genus Aplysia are the most common grazers. These sea hares have acquired chemical defense mechanisms from the algae, frequently in such form that they can be employed for their protection (Palaniveloo and Vairappan 2014). The green turtle (Chelonia midas) is a marine herbivore that has been reported to consume seagrass and algae, including Laurencia spp., in the Torres Strait, Australia (Garnett et al. 1985, André et al. 2005).

Laurencia has been known among local communities for centuries, with various edible species, including L. undulata (now Chondrophycus undulatus) and L. nidifica (referred to as “mane’one’o” in Hawaii) (Abbott and Williamson, 1974, Li et al. 2009) being consumed across the Pacific Ocean. In Japan, there are reports of fisherman harvesting L. nipponica and consuming it as soup after drying; however, some Japanese believe that consuming Laurencia may have abortive effects (Saito 1967).

This genus has an extraordinary diversity of structurally unique metabolites that have been consistently isolated from its representatives over the past few decades. These metabolites span a range of compound classes including sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds. Numerous metabolites derived from Laurencia have been assessed for their effectiveness against diverse bacterial and fungal strains and have demonstrated varying degrees of activity. These metabolites, which are sourced from different origins, undergo antimicrobial activity evaluation using various methods and / or different strains of microorganisms. Notably, isoobtusol, isoobtusol acetate, and obtusol have been identified as common constituents of several Laurencia species, and their antibacterial and antifungal activities have been documented in several studies (Suenaga 2004, Vairappan 2003). Nuclear Magnetic Resonance (NMR) spectroscopy of the other active fractions obtained from initial chromatographic separation of the extract revealed the presence of typical Laurencia compounds. This suggests that additional metabolites within these fractions may also exhibit antimalarial activity (Wright et al. 1996). Bromophenol 985 was obtained from an acetone extract of L. nipponica and demonstrated mild inhibition of glucose 6-phosphate dehydrogenase which has been explored as a potential therapeutic agent for treating obesity (Mikami et al. 2013).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank members of the Molecular Phylogeny of Marine Algae Laboratory at Jeju National University, Korea for the moral supports and invaluable discussions on the manuscript. We also would like to acknowledge the associate editor and the anonymous reviewers for the helpful comments they provided on the manuscript.

References

1

Abbott, I. A. and Williamson, E. H. 1974. LIMU, An Ethnobotanical Study of Some Edible Hawaiian Seaweeds. Pacific Tropical Botanical Garden, Hawaii, 21 pp.

2

Abe, T. and Masuda, M. 1998. Laurencia japonensis sp. nov. (Ceramiales, Rhodophyta). European Journal of Phycology 33(1): 17-24.

10.1080/09670269810001736493
3

Abe, T., Masuda, M., Kawaguchi, S. & Kamura, S. 1998. Taxonomic notes on Laurencia brongniartii (Rhodomelaceae, Rhodophyta). Phycological Research 46(4): 231-237.

10.1111/j.1440-1835.1998.tb00118.x
4

Abe, T., Masuda, M., Kawaguchi, S., Itoh, T. & Suzuki, M. 1975. Additional analysis of chemical diversity in Laurencia nipponica (Ceramiales, Rhodophyta). Phycological Research 45(4): 173-176.

10.1111/j.1440-1835.1997.tb00072.x
5

Agardh, C. A. 1876. Species genera et ordines algarum, seu descriptions succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen tertium: de Florideis curae posteriore, part 1. C.W.K. Gleerup, Leipzig, 724 pp.

6

Agardh, J. G. 1863. Species genera et ordines floridearum, seu descriptions succinctae specierum, generum et ordinum, quibus floridearum classis constituitur. Voluminis secondi: pars tertia. C. W. K. Gleerup, Lund. (in Latin)

7

Agardh, J. G. 1879. Florideernes morphologi. Öfversigt af Kongl. Vetenskaps- Adademiens Förhandlingar 415(6): 199 pp. (in Swedish)

10.5962/bhl.title.60372
8

André, J., Gyuris, E. & Lawler, I. R. 2005. Comparison of the diets sympatric dugongs and green turtles on the Orman Reefs, Torress Strait, Australia. Wildfire Research 32(1): 53-62.

10.1071/WR04015
9

Atmadja, W. S. and Prud'homme van Reine, W. F. 2012. Checklist of the seaweed species biodiversity of Indonesia with their distribution and classification: Rhodophyceae. Ceklis keanekaragaman jenis rumput laut di Indonesia dengan sebaran dan klasifikasinya merah (Rhodophyceae). Jakarta: Coral Reef Information and Training Centre. Coral Reef Rehabilitation and Management Programme. Indonesian Institute of Sciences (LIPI), Jakarta, 72 pp.

10

Bibi, R., Cassano, V., Medeiros, R. D. S., Rashid, S. & Rasheed, M. 2019. Morphological and molecular systematic investigation of Laurencia karachiana sp. nov. (Ceramiales, Rhodophyta) from Karachi, Pakistan. Phytotaxa 404(1): 23-40.

10.11646/phytotaxa.404.1.3
11

Bleckwenn, A., Gil-Rodríguez, M. C., Medina, M. & Schnetter, R. 2003. Possible significance of different DNA content ranges of gametophytic and tetrasporophytic nuclei in two species of Laurencia (Rhodomelaceae, Rhodophyta). European Journal of Phycology 38(4): 307-314.

10.1080/09670260310001412574
12

Boettcher, A. A. and Targett, N. M. 1996. Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. Journal of Experimental Marine Biology and Ecology 196: 29-52.

10.1016/0022-0981(95)00101-8
13

Cassano, V., Díaz-Larrea, J., Sentíes, A., Oliveira, M. C., Gil-Rodríguez, M. C. & Fujii, M. T. 2009. Evidence for the conspecificity of Palisada papillosa with P. perforata (Ceramiales, Rhodophyta) from the western and eastern Atlantic Ocean on the basis of morphological and molecular analyses. Phycologia 48(2): 86-100.

10.2216/0031-8884-48.2.86
14

Cassano, V., Metti, Y., Millar, A. J., Gil-Rodríguez, M. C., Sentíes, A., Díaz-Larrea, J., Oliveira, M. C. & Fujii, M. T. 2012a. Redefining the taxonomic status of Laurencia dendroidea (Ceramiales, Rhodophyta) from Brazil and the Canary Islands. European Journal of Phycology 47(1): 67-81.

10.1080/09670262.2011.647334
15

Cassano, V., Oliveira, M. C., Gil-Rodríguez, M. C., Sentíes, A., Díaz-Larrea, J. & Fujii, M. T. 2012b. Morphological and molecular studies on the Brazilian native red seaweed Laurencia oliveirana (Rhodomelaceae, Ceramiales). Revista Brasileira de Farmacognosia 22: 838-849.

10.1590/S0102-695X2012005000070
16

Cassano, V., Oliveira, M. C., Gil-Rodríguez, M. C., Sentíes, A., Díaz-Larrea, J. & Fujii, M. T. 2012c. Molecular support for the establishment of the new genus Laurenciella within the Laurencia complex (Ceramiales, Rhodophyta). Botanica Marina 55(4): 349-357.

10.1515/bot-2012-0133
17

Cassano, V., Santos, G. N., Pestana, E. M. S., Nunes, J. M. C., Oliveira, M. C. & Fujii, M. T. 2019. Laurencia longiramea sp. nov. for Brazil and an emendation of the generic delineation of Corynecladia (Ceramiales, Rhodophyta). Phycologia 58(2): 115-127.

10.1080/00318884.2018.1523519
18

Cassano, V., Soares, L. P., Vera-Vegas, B. E., Ardito, S., Gómez, S., Sentíes, A. & Fujii, M. T. 2020. Chondrophycus anabeliae and Laurencia digitata (Ceramiales, Rhodophyta) are recorded for the first time for Venezuela expanding their geographic distributions beyond the type localities. Botanical Sciences 98(4): 624-643.

10.17129/botsci.2610
19

Collado-Vides, L., Cassano, V., Diaz-Larrea, J., Duran, A., Medeiros, A. D. S., Senties, A. & Fujii, M. T. 2014. Spread of the introduced species Laurencia caduciramulosa (Rhodomelaceae, Rhodophyta) to the northwest Atlantic: A morphological and molecular analysis. Phytotaxa 183(2): 93-107.

10.11646/phytotaxa.183.2.2
20

Collado-Vides, L., Cassano, V., Santos, G. do Nascimento., Sentíes, A. & Fujii, M. T. 2018. Molecular and morphological characterization of Laurencia intricata and Laurenciella mayaimii sp. nov. (Ceramiales, Rhodophyta) in South Florida, USA. Phycologia 57(3): 287-297.

10.2216/17-80.1
21

Cribb, A. B. 1958. Records of marine algae from south-eastern Queensland. III. Laurencia Lamx. University of Queensland Press, 159-191.

22

Díaz-Larrea, J., Sentíes, A., Fujii, M. T., Pedroche, F. F. & Oliveira, M. C. 2007. Molecular evidence for Chondrophycus poiteaui var. gemmiferus comb. et stat. nov. (Ceramiales, Rhodophyta) from the Mexican Caribbean Sea: implications for the taxonomy of the Laurencia complex. Botanica Marina 50: 250-256.

10.1515/BOT.2007.026
23

Díaz-Tapia, P., Maggs, C. A., West, J. A. & Verbruggen, H. 2017. Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta). Journal of Phycology 53(5): 920-937.

10.1111/jpy.1255328561261
24

Du, G., Wu, F., Guo, H., Xue, H. & Mao, Y. 2015. DNA barcode assessment of Ceramiales (Rhodophyta) in the intertidal zone of the northwestern Yellow Sea. Chinese Journal of Oceanology and Limnology 33(3): 685-695.

10.1007/s00343-015-4088-8
25

Fenical, W. and Norris, J. N. 1975. Chemotaxonomy in marine algae: chemical separation of some Laurencia species (Rhodophyta) from the Gulf of California. Journal of Phycology 11(1): 104-108.

10.1111/j.1529-8817.1975.tb02755.x
26

Francis, C., Bolton, J. J., Mattio, L., Mandiwana-Neudani, T. G. & Anderson, R. J. 2017. Molecular systematics reveals increased diversity within the South African Laurencia complex (Rhodomelaceae, Rhodophyta). Journal of Phycology 53(4): 804-819.

10.1111/jpy.1254328434205
27

Fujii, M. T., Cassano, V., Sentíes, A., Díaz-Larrea, J., Machín-Sánchez, M., & Gil-Rodríguez, M. 2012. Comparative analysis of the corps en cerise in several species of Laurencia (Ceramiales, Rhodophyta) from the Atlantic Ocean. Revista Brasileira de Farmacognosia 22: 795-804.

10.1590/S0102-695X2012005000067
28

Fujii, M. T., Guimaràes, S. M., Gurgel, C. F. D. & Fredericq, S. 2006. Characterization and phylogenetic affinities of the red alga Chondrophycus flagelliferus (Rhodomelaceae, Ceramiales) from Brazil on the basis of morphological and molecular evidence. Phycologia 45(4): 432-441.

10.2216/04-33.1
29

Garbary, D. J. and Harper, J. T. 1998. A phylogenetic analysis of the Laurencia complex (Rhodomelaceae) of the red algae. Cryptogamie Algologie 19: 185-200.

30

Garcia-Soto, G. C. 2017. Towards a phylogenetic framework of the family Rhodomelaceae (Ceramiales, Rhodophyta) using and improved gene and taxon sampling, emphasizing underrepresented genera. Ph.D. dissertation, The University of Alabama, Tuscaloosa, Alabama, 278 pp.

31

Garnett, S. T., Price, I. R. & Scott, F. J. 1985. The diet of the green turtle, Chelonia mydas (L.), in Torres Strait. Australian Wildfire Research 12(1): 103-112.

10.1071/WR9850103
32

Gil-Rodríguez, M. C. and Haroun R. 1992. Laurencia viridis sp. nov. (Ceramiales, Rhodomelaceae) from the Macaronesian Archipelagos. Botanica Marina 35: 227-237.

10.1515/botm.1992.35.3.227
33

Gil-Rodríguez, M. C., Cassano, V., Aylagas, E., Sentíes, A., Díaz-Larrea, J., Oliveira, M. C. & Fujii, M. T. 2010. Palisada flagellifera (Ceramiales, Rhodophyta) from the Canary Islands, Spain: a new record for the eastern Atlantic Ocean based on morphological and molecular evidence. Botanica Marina 53: 31-40.

10.1515/BOT.2010.010
34

Gil-Rodríguez, M. C., Sentíes, A., Díaz-Larrea, J., Cassano, V. & Fujii, M. T. 2009. Laurencia marilzae sp. nov. (Ceramiales, Rhodophyta) from the Canary Islands, Spain, based on morphological and molecular evidence. Journal of Phycology 45: 264-271.

10.1111/j.1529-8817.2008.00624.x27033662
35

Guiry, M. D. and Guiry, G. M. 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 5 December 2023.

36

Hawkes, M. W. 1990. Reproductive strategies. In: Biology of the Red Algae. (Cole, K.M. & Sheath, R.G. Eds). Cambridge University Press 455-476.

37

Kilar, J. A. and Lou, R. M. 1986. The subtleties of camouflage and dietary preference of the decorator crab, Microphrys bicornutus Latreille (Decapoda: Brachyura). Journal of Experimental Marine Biology and Ecology 101: 143.

10.1016/0022-0981(86)90046-8
38

Kundu, P. 2022. Biodiversity characterization of Florideophyceae from Indian coast and Eastern Antarctica coast based upon molecular taxonomy assisted polyphasic approach. Ph.D. dissertation, Central University of Punjab, Punjab, India, 194 pp.

39

Kurihara, A., Abe, T., Tani, M. & Sherwood, A. R. 2010. Molecular Phylogeny and Evolution of Red Algal Parasites: A Case Study of Benzaitenia, Janczewskia, and Ululania (Ceramiales). Journal of Phycology 46(3): 580-590.

10.1111/j.1529-8817.2010.00834.x
40

Kylin, H. 1923. Studien über die Entwicklungsgeschichte der Florideen. Kongliga Svenska Vetenskaps-Akademiens Handlingar 63(11): 1-139.

41

Lamouroux, J. V. F. 1813. Essai sur les genres de la famille des Thalassiophytes non articulées. Dufour, Paris, 84 pp.

42

Lastimoso, J. M. L. and Santiañez, W. J. E. 2021. Updated Checklist of the Benthic Marine Macroalgae of the Philippines. Philippine Journal of Science 150(S1): 29-92.

10.56899/150.S1.04
43

Lewis, S., Gacesa, P., Gil-Rodriguez, M. C., Vald_es, F. & Frias, I. 2008. Molecular systematics of the genera Laurencia, Osmundea and Palisada (Rhodophyta) form the Canary Islands - Analysis of rDNA and RUBISCO spacer sequences. Anales del Jardín Botánico de Madrid 65(1): 91-109.

10.3989/ajbm.2008.v65.i1.248
44

Li, J. J., Hu, Z. M., Gao, X., Sun, Z. M., Choi, H. G., Duan, D. L. & Endo, H. 2017. Oceanic currents drove population genetic connectivity of the brown alga Sargassum thunbergii in the north‐west Pacific. Journal of Biogeography 44(1): 230-242.

10.1111/jbi.12856
45

Li, Y. X., Li, Y., Qian, Z. J., Kim, M. M. & Kim, S. K. 2009. In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free-radical-mediated oxidative systems. Journal of Microbiology and Biotechnology 19(11): 1319-1327.

10.4014/jmb.0901.00004
46

Liu, R. Y. 2008. Checklist of biota of Chinese Seas. Science Press, Beijing, 1267 pp. (in Chinese).

47

Machín-Sánchez, M., Le Gall, L., Neto, A. I., Rousseau, F., Cassano, V., Sentíes, A., Fujii, M. T., Díaz-Larrea J., van Reine, W. F. P., Bonillo, C & Gil-Rodríguez, M. C. 2014. A combined barcode and morphological approach to the systematics and biogeography of Laurencia pyramidalis and Laurenciella marilzae (Rhodophyta). European Journal of Phycology 49(1): 115-127.

10.1080/09670262.2014.893017
48

Martin-Lescanne, J., Rousseau, F., De Reviers, B., Payri, C., Couloux, A. Cruaud, C. & Le Gall, L. 2010. Phylogenetic analyses of the Laurencia complex (Rhodomelaceae, Ceramiales) support recognition of five genera: Chondrophycus, Laurencia, Osmundea, Palisada and Yuzurua stat. nov.. European Journal of Phycology 45(1): 51-61.

10.1080/09670260903314292
49

Marx, J. M. and Herrnkind, W. F. 1985. Macroalgae (Rhodophyta: Laurencia spp.) as habitat for young juvenile spiny lobsters, Panulirus argus. Bulletin of Marine Science 36(3): 423-431.

50

Masuda, M. 1997. A new species of Laurencia, L. omaezakiana (Ceramiales, Rhodophyta), from Japan. Phycological Research 45(3): 123-131.

10.1111/j.1440-1835.1997.tb00084.x
51

Masuda, M. and Abe, T. 1993. The occurrence of Laurencia saitoi Perestenko (L. obtusa auct. japon.) (Ceramiales, Rhodophyta) in Japan. Japanese Journal of Phycology 41: 7-18.

52

Masuda, M., Abe, T., Sato, S., Suzuki, T. & Suzuki, M. 1997. Diversity of halogenated secondary metabolites in the red alga Laurencia nipponica (Rhodomelaceae, Ceramiales). Journal of Phycology 33(2): 196-208.

10.1111/j.0022-3646.1997.00196.x
53

Masuda, M., Abe, T., Suzuki, T. & Suzuki, M. 1996. Morphological and chemotaxonomic studies on Laurencia composita and L. okamurae (Ceramiales, Rhodophyta). Phycologia 35: 550-562.

10.2216/i0031-8884-35-6-550.1
54

Masuda, M., Kawaguchi, S., Abe, T., Kawamoto, T. & Suzuki, M. 2002. Additional analysis of chemical diversity of the red algal genus Laurencia (Rhodomelaceae) from Japan. Phycological Research 50(2): 135-144.

10.1111/j.1440-1835.2002.tb00144.x
55

McDermid, K. J. 1988. Section V. Laurencia (Rhodophyta, Rhodomelaceae) Introduction. In Abbott I. A. (Ed.). Taxonomy of Economic Seaweeds: 221-229.

56

Metti, Y. 2017. Laurencia majuscula var. elegans (Rhodophyta, Rhodomelaceae) is reinstated to specific rank as L. elegans. Phycological Research 65(2): 127-135.

10.1111/pre.12169
57

Metti, Y. 2022. Based on morphology and molecular data, Palisada rigida comb. nov. and Laurencia decussata comb. et stat. nov. (Rhodophyta, Rhodomelaceae) are proposed. Algae 37(1): 15-32.

10.4490/algae.2022.37.2.21
58

Metti, Y., Millar, A. J. K. & Steinberg, P. 2015. A new molecular phylogeny of the Laurencia complex (Rhodophyta, Rhodomelaceae) and a review of key morphological characters result in a new genus, Coronaphycus, and a description of C. novus. Journal of Phycology 51(5): 929-942.

10.1111/jpy.1233326986889
59

Metti, Y., Millar, A. J., Cassano, V. & Fujii, M. T. 2013. Australian Laurencia majuscula (Rhodophyta, Rhodomelaceae) and the Brazilian Laurencia dendroidea are conspecific. Phycological Research 61(2): 98-104.

10.1111/pre.12009
60

Mikami, D., Kurihara, H., Kim, S. M. & Takahashi, K. 2013. Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Marine Drugs 11(10): 4050-4057.

10.3390/md1110405024152564PMC3826149
61

Mshiywa, F. M., Edwards, S. & Bradley, G. 2023. Rhodophyta DNA Barcoding: Ribulose-1, 5-Bisphosphate Carboxylase Gene and Novel Universal Primers. International Journal of Molecular Sciences 25, 58: 1-10.

10.3390/ijms2501005838203228PMC10871077
62

Nam, K. W. 1999. Morphology of Chondrophycus undulata and C. parvipapillata and its implications for the taxonomy of the Laurencia (Ceramiales, Rhodophyta) complex. European Journal of Phycology 34: 455-468.

10.1017/S0967026299002462
63

Nam, K. W. 2006. Phylogenetic re-evaluation of the Laurencia complex (Rhodophyta) with a description of L. succulenta sp. nov. from Korea. Journal of Applied Phycology 18: 679-697.

10.1007/s10811-006-9073-3
64

Nam, K. W. 2007. Validation of the generic name Palisada (Rhodomelaceae, Rhodophyta). Algae 22(2): 53-55.

10.4490/ALGAE.2007.22.2.053
65

Nam, K. W. 2011. Algal flora of Korea. Volume 4, Number 3. Rhodophyta: Florideophyceae, Ceramiales: Rhodomelaceae: Laurencia, Chondrophycus, Palisada, Chondria. Marine red algae. National Institute of Biological Resources, Incheon, 198 pp.

66

Nam, K. W., Maggs, C. A. & Garbary, D. J. 1994. Resurrection of the genus Osmundea with an emendation of the generic delineation of Laurencia (Ceramiales, Rhodophyta). Phycologia 33(5): 384-395.

10.2216/i0031-8884-33-5-384.1
67

Nam, K. W., Maggs, C. A., McIvor, L. & Stanhope, M. J. 2000. Taxonomy and phylogeny of Osmundea (Rhodomelaceae, Rhodophyta) in Atlantic Europe. Journal of phycology 36(4): 759-772.

10.1046/j.1529-8817.2000.00013.x29542162
68

Nguyen, M. L. Kim, M. S., Nguyen, N. T. N., Nguyen, X. T., Cao, V. L., Nguyen, X. V. & Vieira, C. 2023. Marine Floral Biodiversity, Threats, and Conservation in Vietnam: An Updated Review. Plants 12(9): 1862.

10.3390/plants1209186237176920PMC10181403
69

Ortega, A., Geraldi, N. R., Díaz‐Rúa, R., Ørberg, S. B., Wesselmann, M., Krause‐Jensen, D. & Duarte, C. M. 2020. A DNA mini‐barcode for marine macrophytes. Molecular ecology resources 20(4): 920-935.

10.1111/1755-0998.1316432279439
70

Palaniveloo, K. and Vairappan, C. S. 2014. Chemical relationship between red algae genus Laurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. Journal of Applied Phycology 26: 1199-1205.

10.1007/s10811-013-0127-z
71

Phang, S. M., Yeong, H. Y., Ganzon-Fortes, E. T., Lewmanomont, K., Prathep, A., Gerung, G. S. & Tan, K. S. 2016. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bulletin of Zoology 34: 13-59.

72

Phillips, L. E., Choi, H. G., Saunders, G. W. & Kraft, G. T. 2000. The morphology, taxonomy, and molecular phylogeny of Heterocladia and Trigenea (Rhodomelaceae, Rhodophyta), with delineation of the little‐known tribe Heterocladieae. Journal of Phycology 36(1): 199-219.

10.1046/j.1529-8817.2000.98186.x
73

Popolizio, T. R., Schneider, C. W., Jongbloed, W. M., Saunders, G. W. & Lane, C. E. 2022. Molecular analysis resolves the taxonomy of the Laurencia complex (Rhodomelaceae, Ceramiales) in Bermuda and uncovers novel species of Chondrophycus and Laurenciella. Cryptogamie Algologie 43(1): 1-30.

10.5252/cryptogamie-algologie2022v43a1
74

Preuss, M., Díaz‐Tapia, P., Verbruggen, H. & Zuccarello, G. C. 2023. Gene‐rich plastid genomes of two parasitic red algal species, Laurencia australis and L. verruciformis (Rhodomelaceae, Ceramiales), and a taxonomic revision of Janczewskia. Journal of Phycology 59(5): 950-962.

10.1111/jpy.1337337638497
75

Rocha-Jorge, R., Cassano, V., Oliveira, M. C. & Fujii, M. T 2010. The occurrence of Laurencia marilzae (Ceramiales, Rhodophyta) in Brazil based on morphological and molecular data. Botanica Marina 53(2): 143-152.

10.1515/BOT.2010.018
76

Rousseau, F., Gey, D., Kurihara A., Maggs, C. A., Martin-Lescanne, J., Payri, C., Reviers B. de, Sherwood, A. R. & Le Gall, L. 2017. Molecular phylogenies support taxonomic revision of three species of Laurencia (Rhodomelaceae, Rhodophyta), with the description of a new genus. European Journal of Taxonomy 269: 1-19.

10.5852/ejt.2017.269
77

Saito, Y. 1967. Studies on Japanese species of Laurencia, with special reference to their comparative morphology. Memoirs of the Faculty of Fisheries Hokkaido University, 15(1): 1-81.

78

Saito, Y. and Womersley, H. B. S. 1974. The southern Australian species of Laurencia (Ceramiales: Rhodophyta). Australian Journal of Botany 22(4): 815-874.

10.1071/BT9740815
79

Saunders, G. W. 2014. Long distance kelp rafting impacts seaweed biogeography in the Northeast Pacific: the kelp conveyor hypothesis. Journal of phycology 50(6): 968-974.

10.1111/jpy.1223726988778
80

Schmitz, F. 1889. Systematische Übersicht der bisher bekannten Gattungen der Florideen. Flora oder Allgemeine botanische Zeitung 72: 435-456.

81

Sentíes, A., Areces, A., Díaz-Larrea, J. & Fujii, M. T. 2010. First records of Laurencia caduciramulosa and L. minuscula (Ceramiales, Rhodophyta) from the Cuban archipelago. Botanica Marina 53: 433-438.

10.1515/bot.2010.048
82

Sentíes, A., Dreckmann, K. M., Hernández, O. E., Nunez Resendiz, M. L., Le Gall, L. & Cassano, V. 2019. Diversity and distribution of Laurencia sensu stricto (Rhodomelaceae, Rhodophyta) from the Mexican Pacific, including L. mutueae sp. nov. Phycological Research 67(4): 267-278.

10.1111/pre.12382
83

Serio, D., Furnari, G. & Metti, Y. 2020. Molecular analysis confirms Laurenciella marilzae (Rhodophyta, Rhodomelaceae) in the Mediterranean Sea, a species often misidentified as Laurencia dendroidea. Botanica Marina 63(6): 527- 535.

10.1515/bot-2020-0030
84

Sherwood, A. R., Kurihara, A., Conklin, K. Y., Sauvage, T. & Presting, G. G. 2010. The Hawaiian Rhodophyta Biodiversity Survey (2006-2010): a summary of principal findings. BMC Plant Biology 10(1): 1-29.

10.1186/1471-2229-10-25821092229PMC3012605
85

Soe-Htun, U., Kyaw, S. P., Wai, M. K., San, J., Khaing, S. M. & Aye, C. P. P. 2021. A review on the seaweed resources of Myanmar. Journal of Aquaculture and Marine Biology 10(4): 152-66.

10.15406/jamb.2021.10.00317
86

Stackhouse, J. 1809. Tentamen marino-cryptogamicum, ordinem novum; in genera et species distributum, in Classe XXIVta Linnaei sistens. Mémoires de la Société Imperiale des Naturalistes de Moscou 2: 50-97.

87

Stackhouse, J. 1816. Nereis Britannica Editio altera. Nova addita classification cryptogamiarum [sic] respect generis Fuci. Excudebat S. Collingwood, Oxford, 99 pp. (in Latin)

88

Suenaga, K. 2004. Bioorganic studies on marine natural products with bioactivity, such as antitumor activity and feeding attractance. Bulletin of the Chemical Society of Japan 77(3): 443-451.

10.1246/bcsj.77.443
89

Tseng, C. K. 1983. Common seaweeds of China. Science Press, Beijing, 316 pp.

90

Tsutsui, I., Hamano, K., Aue-umneoy, D., Songphatkaew, J., Srisapoome, P., Ruangsomboon, S., Klomkling, S., Ganmanee, M., Taveekijararn, P. & Maeno, Y. 2012. Common underwater plants in coastal areas of Thailand. JIRCAS International Agriculture Series 21.

91

Vairappan, C. S. 2003. Potent antibacterial activity of halogenated metabolites from Malaysian red algae Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomolecular Engingeering 20(4-6): 255-259.

10.1016/S1389-0344(03)00067-412919806
92

Verbruggen, H. and Costa, J. F. 2015. The plastid genome of the red alga Laurencia. Journal of Phycology. 51(3): 586-589.

10.1111/jpy.1229726986672
93

Wright, A. D., König, G. M., Angerhofer, C. K., Greenidge, P., Linden, A. & Desqueyroux Faúndez, R. 1996. Antimalarial activity: the search for marine-derived natural products with selective antimalarial activity. Journal of Natural Products 59(7): 710-716.

10.1021/np96023258759172
94

Yamada, Y. 1931. Notes on Laurencia, with special reference to the Japanese species. University of California Publication in Botany 16:185-310.

95

Yamasaki, M., Aono, M., Ogawa, N., Tanaka, K., Imoto, Z. & Nakamura, Y. 2014. Drifting algae and fish: Implications of tropical Sargassum invasion due to ocean warming in western Japan. Estuarine, coastal and shelf science 147: 32-41.

10.1016/j.ecss.2014.05.018
96

Yoon, H. S., Zuccarello, G. C. & Bhattacharya, D. 2010. Evolutionary History and Taxonomy of Red Algae. In Red Algae in the Genomic Age. Dordrecht Springer Netherlands, 25-42.

10.1007/978-90-481-3795-4_2
97

Yoshida, T., Suzuki, M. & Yoshinaga, K. 2015. Checklist of marine algae of Japan (Revised in 2015). Japanese Journal of Phycology 63: 129-189. (in Japanese)

페이지 상단으로 이동하기