Review
Bali, S., Palmer, D. J., Schroeder, S., Ferguson, S. J. & Warren, M. J. 2014. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d1. Cell. Mol. Life Sci. 71(15): 2837-2863.
10.1007/s00018-014-1563-x24515122PMC11113276Breckau, D., Mahlitz, E., Sauerwald, A., Layer, G. & Jahn, D. 2003. Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J. Biol. Chem. 278(47): 46625-46631.
10.1074/jbc.M30855320012975365Breinig, S., Kervinen, J., Stith, L., Wasson, A. S., Fairman, R., Wlodawer, A., Zdanov, A. & Jaffe, E. K. 2003. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat. Struct. Biol. 10(9): 757-763.
10.1038/nsb96312897770Chen, H., Wang, Y., Wang, W., Cao, T., Zhang, L., Wang, Z., Chi, X., Shi, T., Wang, H., He, X., Liang, M., Yang, M., Jiang, W., Lv, D., Yu, J., Zhu, G., Xie, Y., Gao, B., Wang, X., Liu, X., Li, Y., Ouyang, L., Zhang, J., Liu, H., Li, Z., Tong, Y., Xia, X., Tan, G. Y. & Zhang, L. 2024. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat. Biotechnol.
10.1038/s41587-024-02317-wChoi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. 2022. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119(11): 3178-3193.
10.1002/bit.2819435892195Dailey, H. A., Dailey, T. A., Gerdes, S., Jahn, D., Jahn, M., O'Brian, M. R. & Warren, M. J. 2017. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol. Mol. Biol. Rev. 81(1): e00048-16.
10.1128/MMBR.00048-1628123057PMC5312243Dailey, H. A., Gerdes, S., Dailey, T. A., Burch, J. S. & Phillips, J. D. 2015. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl. Acad. Sci. U. S. A. 112(7): 2210-2215.
10.1073/pnas.141628511225646457PMC4343137Guo, Q., Li, J., Wang, M. R., Zhao, M., Zhang, G., Tang, S., Xiong, L. B., Gao, B., Wang, F. Q. & Wei, D. Z. 2024. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme. Metab. Eng. 85: 46-60.
10.1016/j.ymben.2024.07.00739019249Heinemann, I. U., Jahn, M. & Jahn, D. 2008. The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474(2): 238-251.
10.1016/j.abb.2008.02.01518314007Hofbauer, S., Mlynek, G., Milazzo, L., Puhringer, D., Maresch, D., Schaffner, I., Furtmuller, P. G., Smulevich, G., Djinovic-Carugo, K. & Obinger, C. 2016. Hydrogen peroxide-mediated conversion of coproheme to heme b by HemQ-lessons from the first crystal structure and kinetic studies. FEBS J. 283(23): 4386-4401.
10.1111/febs.1393027758026PMC5157759Hoober, J. K., Kahn, A., Ash, D. E., Gough, S. & Kannangara, C. G. 1988. Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res. Commun. 53(1): 11-25.
10.1007/BF029084113256306Ishida, T., Yu, L., Akutsu, H., Ozawa, K., Kawanishi, S., Seto, A., Inubushi, T. & Sano, S. 1998. A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris. Proc. Natl. Acad. Sci. U. S. A. 95(9): 4853-4858.
10.1073/pnas.95.9.48539560192PMC20177Jordan, P. M. and Berry, A. 1981. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. Biochem. J. 195(1): 177-181.
10.1042/bj19501776975621PMC1162869Ko, Y. J., Joo, Y. C., Hyeon, J. E., Lee, E., Lee, M. E., Seok, J., Kim, S. W., Park, C. & Han, S. O. 2018. Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Sci. Rep. 8(1): 14460.
10.1038/s41598-018-32854-930262872PMC6160403Ko, Y. J., Kim, M., You, S. K., Shin, S. K., Chang, J., Choi, H. J., Jeong, W. Y., Lee, M. E., Hwang, D. H. & Han, S. O. 2021. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66: 217-228.
10.1016/j.ymben.2021.04.01333945844Ko, Y. J., Lee, M. E., Cho, B. H., Kim, M., Hyeon, J. E., Han, J. H. & Han, S. O. 2024. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit. Rev. Biotechnol. 44(3): 373-387.
10.1080/07388551.2023.216851236775664Ko, Y. J., Oh, J. J. & Han, S. O. 2023. Biobased sunscreen fabrication using Zn-porphyrins from engineered Corynebacterium glutamicum. Green Chem. 25(14): 5626-5633.
10.1039/D3GC00888FKoch, M., Breithaupt, C., Kiefersauer, R., Freigang, J., Huber, R. & Messerschmidt, A. 2004. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J. 23(8): 1720-1728.
10.1038/sj.emboj.760018915057273PMC394243Layer, G. 2021. Heme biosynthesis in prokaryotes. Biochim. Biophys. Acta, Mol. Cell Res. 1868(1): 118861.
10.1016/j.bbamcr.2020.11886132976912Lee, H. J., Shin, D. J., Nho, S. B., Lee, K. W. & Kim, S. K. 2024. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Biotechnol. J. 19(10): e202400351.
10.1002/biot.20240035139380497Lobo, S. A., Scott, A., Videira, M. A., Winpenny, D., Gardner, M., Palmer, M. J., Schroeder, S., Lawrence, A. D., Parkinson, T., Warren, M. J. & Saraiva, L. M. 2015. Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway. Mol. Microbiol. 97(3): 472-487.
10.1111/mmi.1304125908396Luer, C., Schauer, S., Mobius, K., Schulze, J., Schubert, W. D., Heinz, D. W., Jahn, D. & Moser, J. 2005. Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. J. Biol. Chem. 280(19): 18568-18572.
10.1074/jbc.M50044020015757895Mobius, K., Arias-Cartin, R., Breckau, D., Hannig, A. L., Riedmann, K., Biedendieck, R., Schroder, S., Becher, D., Magalon, A., Moser, J., Jahn, M. & Jahn, D. 2010. Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. U. S. A. 107(23): 10436-10441.
10.1073/pnas.100095610720484676PMC2890856Nandi, D. L. 1978. Delta-aminolevulinic acid synthase of rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme. Arch. Biochem. Biophys. 188(2): 266-271.
10.1016/S0003-9861(78)80008-3307943Palmer, D. J., Schroeder, S., Lawrence, A. D., Deery, E., Lobo, S. A., Saraiva, L. M., McLean, K. J., Munro, A. W., Ferguson, S. J., Pickersgill, R. W., Brown, D. G. & Warren, M. J. 2014. The structure, function and properties of sirohaem decarboxylase--an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway. Mol. Microbiol. 93(2): 247-261.
10.1111/mmi.1265624865947PMC4145669Rand, K., Noll, C., Schiebel, H. M., Kemken, D., Dulcks, T., Kalesse, M., Heinz, D. W. & Layer, G. 2010. The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX. Biol. Chem. 391(1): 55-63.
10.1515/bc.2010.00619919179Sorensen, J. L. and Stetefeld, J. 2011. Kinemage of action - proposed reaction mechanism of glutamate-1-semialdehyde aminomutase at an atomic level. Biochem. Biophys. Res. Commun. 413(4): 572-576.
10.1016/j.bbrc.2011.09.00321930115Storbeck, S., Rolfes, S., Raux-Deery, E., Warren, M. J., Jahn, D. & Layer, G. 2010. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence. Archaea. 2010, 175050.
10.1155/2010/17505021197080PMC3004389Yang, S., Wang, A., Li, J., Shao, Y., Sun, F., Li, S., Cao, K., Liu, H., Xiong, P. & Gao, Z. 2023. Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation. Microb. Cell Fact. 22(1): 102.
10.1186/s12934-023-02077-337198628PMC10193802Yu, F. and Zhou, Y. J. 2024. Sustainable production of porphyrins through synthetic biology. Trends Biotechnol.
10.1016/j.tibtech.2024.09.009PMC11741143- Publisher :Jeju Journal of Island Sciences
- Publisher(Ko) :제주섬과학회지
- Journal Title :Jeju Journal of Island Sciences
- Journal Title(Ko) :제주섬과학회지
- Volume : 2
- No :1
- Pages :12-19
- Received Date : 2025-01-14
- Revised Date : 2025-02-17
- Accepted Date : 2025-02-17
- DOI :https://doi.org/10.23264/JJIS.2025.2.1.012