All Issue

2025 Vol.2, Issue 1 Preview Page

Review

28 February 2025. pp. 12-19
Abstract
References
1

Bali, S., Palmer, D. J., Schroeder, S., Ferguson, S. J. & Warren, M. J. 2014. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d1. Cell. Mol. Life Sci. 71(15): 2837-2863.

10.1007/s00018-014-1563-x24515122PMC11113276
2

Breckau, D., Mahlitz, E., Sauerwald, A., Layer, G. & Jahn, D. 2003. Oxygen-dependent coproporphyrinogen III oxidase (HemF) from Escherichia coli is stimulated by manganese. J. Biol. Chem. 278(47): 46625-46631.

10.1074/jbc.M30855320012975365
3

Breinig, S., Kervinen, J., Stith, L., Wasson, A. S., Fairman, R., Wlodawer, A., Zdanov, A. & Jaffe, E. K. 2003. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat. Struct. Biol. 10(9): 757-763.

10.1038/nsb96312897770
4

Chen, H., Wang, Y., Wang, W., Cao, T., Zhang, L., Wang, Z., Chi, X., Shi, T., Wang, H., He, X., Liang, M., Yang, M., Jiang, W., Lv, D., Yu, J., Zhu, G., Xie, Y., Gao, B., Wang, X., Liu, X., Li, Y., Ouyang, L., Zhang, J., Liu, H., Li, Z., Tong, Y., Xia, X., Tan, G. Y. & Zhang, L. 2024. High-yield porphyrin production through metabolic engineering and biocatalysis. Nat. Biotechnol.

10.1038/s41587-024-02317-w
5

Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. 2022. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119(11): 3178-3193.

10.1002/bit.2819435892195
6

Dailey, H. A., Dailey, T. A., Gerdes, S., Jahn, D., Jahn, M., O'Brian, M. R. & Warren, M. J. 2017. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol. Mol. Biol. Rev. 81(1): e00048-16.

10.1128/MMBR.00048-1628123057PMC5312243
7

Dailey, H. A., Gerdes, S., Dailey, T. A., Burch, J. S. & Phillips, J. D. 2015. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl. Acad. Sci. U. S. A. 112(7): 2210-2215.

10.1073/pnas.141628511225646457PMC4343137
8

Guo, Q., Li, J., Wang, M. R., Zhao, M., Zhang, G., Tang, S., Xiong, L. B., Gao, B., Wang, F. Q. & Wei, D. Z. 2024. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme. Metab. Eng. 85: 46-60.

10.1016/j.ymben.2024.07.00739019249
9

Heinemann, I. U., Jahn, M. & Jahn, D. 2008. The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474(2): 238-251.

10.1016/j.abb.2008.02.01518314007
10

Hofbauer, S., Mlynek, G., Milazzo, L., Puhringer, D., Maresch, D., Schaffner, I., Furtmuller, P. G., Smulevich, G., Djinovic-Carugo, K. & Obinger, C. 2016. Hydrogen peroxide-mediated conversion of coproheme to heme b by HemQ-lessons from the first crystal structure and kinetic studies. FEBS J. 283(23): 4386-4401.

10.1111/febs.1393027758026PMC5157759
11

Hoober, J. K., Kahn, A., Ash, D. E., Gough, S. & Kannangara, C. G. 1988. Biosynthesis of delta-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res. Commun. 53(1): 11-25.

10.1007/BF029084113256306
12

Ishida, T., Yu, L., Akutsu, H., Ozawa, K., Kawanishi, S., Seto, A., Inubushi, T. & Sano, S. 1998. A primitive pathway of porphyrin biosynthesis and enzymology in Desulfovibrio vulgaris. Proc. Natl. Acad. Sci. U. S. A. 95(9): 4853-4858.

10.1073/pnas.95.9.48539560192PMC20177
13

Jordan, P. M. and Berry, A. 1981. Mechanism of action of porphobilinogen deaminase. The participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas spheroides. Biochem. J. 195(1): 177-181.

10.1042/bj19501776975621PMC1162869
14

Ko, Y. J., Joo, Y. C., Hyeon, J. E., Lee, E., Lee, M. E., Seok, J., Kim, S. W., Park, C. & Han, S. O. 2018. Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Sci. Rep. 8(1): 14460.

10.1038/s41598-018-32854-930262872PMC6160403
15

Ko, Y. J., Kim, M., You, S. K., Shin, S. K., Chang, J., Choi, H. J., Jeong, W. Y., Lee, M. E., Hwang, D. H. & Han, S. O. 2021. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66: 217-228.

10.1016/j.ymben.2021.04.01333945844
16

Ko, Y. J., Lee, M. E., Cho, B. H., Kim, M., Hyeon, J. E., Han, J. H. & Han, S. O. 2024. Bioproduction of porphyrins, phycobilins, and their proteins using microbial cell factories: engineering, metabolic regulations, challenges, and perspectives. Crit. Rev. Biotechnol. 44(3): 373-387.

10.1080/07388551.2023.216851236775664
17

Ko, Y. J., Oh, J. J. & Han, S. O. 2023. Biobased sunscreen fabrication using Zn-porphyrins from engineered Corynebacterium glutamicum. Green Chem. 25(14): 5626-5633.

10.1039/D3GC00888F
18

Koch, M., Breithaupt, C., Kiefersauer, R., Freigang, J., Huber, R. & Messerschmidt, A. 2004. Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J. 23(8): 1720-1728.

10.1038/sj.emboj.760018915057273PMC394243
19

Layer, G. 2021. Heme biosynthesis in prokaryotes. Biochim. Biophys. Acta, Mol. Cell Res. 1868(1): 118861.

10.1016/j.bbamcr.2020.11886132976912
20

Lee, H. J., Shin, D. J., Nho, S. B., Lee, K. W. & Kim, S. K. 2024. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Biotechnol. J. 19(10): e202400351.

10.1002/biot.20240035139380497
21

Lobo, S. A., Scott, A., Videira, M. A., Winpenny, D., Gardner, M., Palmer, M. J., Schroeder, S., Lawrence, A. D., Parkinson, T., Warren, M. J. & Saraiva, L. M. 2015. Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway. Mol. Microbiol. 97(3): 472-487.

10.1111/mmi.1304125908396
22

Luer, C., Schauer, S., Mobius, K., Schulze, J., Schubert, W. D., Heinz, D. W., Jahn, D. & Moser, J. 2005. Complex formation between glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase in Escherichia coli during the initial reactions of porphyrin biosynthesis. J. Biol. Chem. 280(19): 18568-18572.

10.1074/jbc.M50044020015757895
23

Mobius, K., Arias-Cartin, R., Breckau, D., Hannig, A. L., Riedmann, K., Biedendieck, R., Schroder, S., Becher, D., Magalon, A., Moser, J., Jahn, M. & Jahn, D. 2010. Heme biosynthesis is coupled to electron transport chains for energy generation. Proc. Natl. Acad. Sci. U. S. A. 107(23): 10436-10441.

10.1073/pnas.100095610720484676PMC2890856
24

Nandi, D. L. 1978. Delta-aminolevulinic acid synthase of rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme. Arch. Biochem. Biophys. 188(2): 266-271.

10.1016/S0003-9861(78)80008-3307943
25

Palmer, D. J., Schroeder, S., Lawrence, A. D., Deery, E., Lobo, S. A., Saraiva, L. M., McLean, K. J., Munro, A. W., Ferguson, S. J., Pickersgill, R. W., Brown, D. G. & Warren, M. J. 2014. The structure, function and properties of sirohaem decarboxylase--an enzyme with structural homology to a transcription factor family that is part of the alternative haem biosynthesis pathway. Mol. Microbiol. 93(2): 247-261.

10.1111/mmi.1265624865947PMC4145669
26

Rand, K., Noll, C., Schiebel, H. M., Kemken, D., Dulcks, T., Kalesse, M., Heinz, D. W. & Layer, G. 2010. The oxygen-independent coproporphyrinogen III oxidase HemN utilizes harderoporphyrinogen as a reaction intermediate during conversion of coproporphyrinogen III to protoporphyrinogen IX. Biol. Chem. 391(1): 55-63.

10.1515/bc.2010.00619919179
27

Sorensen, J. L. and Stetefeld, J. 2011. Kinemage of action - proposed reaction mechanism of glutamate-1-semialdehyde aminomutase at an atomic level. Biochem. Biophys. Res. Commun. 413(4): 572-576.

10.1016/j.bbrc.2011.09.00321930115
28

Storbeck, S., Rolfes, S., Raux-Deery, E., Warren, M. J., Jahn, D. & Layer, G. 2010. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence. Archaea. 2010, 175050.

10.1155/2010/17505021197080PMC3004389
29

Yang, S., Wang, A., Li, J., Shao, Y., Sun, F., Li, S., Cao, K., Liu, H., Xiong, P. & Gao, Z. 2023. Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation. Microb. Cell Fact. 22(1): 102.

10.1186/s12934-023-02077-337198628PMC10193802
30

Yu, F. and Zhou, Y. J. 2024. Sustainable production of porphyrins through synthetic biology. Trends Biotechnol.

10.1016/j.tibtech.2024.09.009PMC11741143
31

Zhang, J., Cui, Z., Zhu, Y., Zhu, Z., Qi, Q. & Wang, Q. 2022. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnology advances. 55: 107904.

10.1016/j.biotechadv.2021.10790434999139
32

Zhao, X. R., Choi, K. R. & Lee, S. Y. 2018. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1(9): 720-728.

10.1038/s41929-018-0126-1
Information
  • Publisher :Jeju Journal of Island Sciences
  • Publisher(Ko) :제주섬과학회지
  • Journal Title :Jeju Journal of Island Sciences
  • Journal Title(Ko) :제주섬과학회지
  • Volume : 2
  • No :1
  • Pages :12-19
  • Received Date : 2025-01-14
  • Revised Date : 2025-02-17
  • Accepted Date : 2025-02-17