All Issue

2024 Vol.1, Issue 1 Preview Page

Review

30 April 2024. pp. 12-19
Abstract
References
1

Al-Fageeh, M. B. and Smales, C. M. 2006. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal 397(2): 247-259.

10.1042/BJ2006016616792527PMC1513281
2

Bartolo-Aguilar, Y., Chávez-Cabrera, C., Flores-Cotera, L. B., Badillo-Corona, J. A., Oliver-Salvador, C. & Marsch, R. 2022. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. Journal of Genetic Engineering and Biotechnology 20(1): 173.

10.1186/s43141-022-00455-936580173PMC9800685
3

Dahlquist, K. D., Fitzpatrick, B. G., Camacho, E. T., Entzminger, S. D. & Wanner, N. C. 2015. Parameter Estimation for Gene Regulatory Networks from Microarray Data: Cold Shock Response in Saccharomyces cerevisiae. Bulletin of Mathematical Biology 77(8): 1457-1492.

10.1007/s11538-015-0092-626420504PMC4636536
4

Giuliodori, A. M., Belardinelli, R., Duval, M., Garofalo, R., Schenckbecher, E., Hauryliuk, V., Ennifar, E. & Marzi, S. 2023. Escherichia coli CspA stimulates translation in the cold of its own mRNA by promoting ribosome progression. Frontiers in Microbiology 14: 1118329.

10.3389/fmicb.2023.111832936846801PMC9947658
5

Giuliodori, A. M., Fabbretti, A. & Gualerzi, C. 2019. Cold-responsive regions of paradigm cold-shock and non-cold-shock mRNAs responsible for cold shock translational bias. International Journal of Molecular Sciences 20(3): 457.

10.3390/ijms2003045730678142PMC6386945
6

Goldstein, J., Pollitt, N. S. & Inouye, M. 1990. Major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 87(1): 283-287.

10.1073/pnas.87.1.2832404279PMC53247
7

Gottesman, S. 2018. Chilled in translation: adapting to bacterial climate change. Molecular Cell 70(2): 193-194.

10.1016/j.molcel.2018.04.00329677488
8

Gualerzi, C. O., Giuliodori, A. M. & Pon, C. L. 2003. Transcriptional and post-transcriptional control of cold-shock genes. Journal of Molecular Biology 331(3): 527-539.

10.1016/S0022-2836(03)00732-012899826
9

Heinemann, U. and Roske, Y. 2021. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 13(2): 190.

10.3390/cancers1302019033430354PMC7825780
10

Jones, P. G. and Inouye, M. 1994. The cold‐shock response-a hot topic. Molecular Microbiology 11(5): 811-818.

10.1111/j.1365-2958.1994.tb00359.x8022259
11

Lindquist, J. A. and Mertens, P. R. 2018. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Communication and Signaling 16(1): 63.

10.1186/s12964-018-0274-630257675PMC6158828
12

Manival, X., Ghisolfi-Nieto, L., Joseph, G., Bouvet, P. & Erard, M. 2001. RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins. Nucleic Acids Research 29(11): 2223-2233.

10.1093/nar/29.11.222311376140PMC55715
13

Murzin, A. G. 1993. OB(oligonucleotide/oligosaccharide binding)‐fold: common structural and functional solution for non‐homologous sequences. The EMBO Journal 12(3): 861-867.

10.1002/j.1460-2075.1993.tb05726.x8458342PMC413284
14

Phadtare, S., Alsina, J. & Inouye, M. 1999. Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2(2): 175-180.

10.1016/S1369-5274(99)80031-910322168
15

Phadtare, S. and Inouye, M. 1999. Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Molecular Microbiology 33(5): 1004-1014.

10.1046/j.1365-2958.1999.01541.x10476034
16

Schindelin, H. and Heinemann, U. 1994. CRYSTAL STRUCTURE OF CSPA, THE MAJOR COLD SHOCK PROTEIN OF ESCHERICHIA COLI. Protein Data Bank 22 June 1994.

10.2210/pdb1mjc/pdbPMC43943
17

Schindelin, H. and Heinemann, U. 1995. CRYSTAL STRUCTURE OF THE BACILLUS SUBTILIS MAJOR COLD SHOCK PROTEIN, CSPB: A UNIVERSAL NUCLEIC-ACID BINDING DOMAIN. Protein Data Base 12 May 1995.

10.2210/pdb1csp/pdb7540215
18

Schindelin, H., Herrler, M., Willimsky, G., Marahiel, M. A. & Heinemann, U. 1992. Overproduction, crystallization, and preliminary X‐ray diffraction studies of the major cold shock protein from Bacillus subtilis, CspB. Proteins: Structure, Function, and Bioinformatics 14(1): 120-124.

10.1002/prot.3401401131409560
19

Schindelin, H., Jiang, W., Inouye, M. & Heinemann, U. 1994. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proceedings of the National Academy of Sciences 91(11): 5119-5123.

10.1073/pnas.91.11.51198197194PMC43943
20

Schindelin, H., Marahiel, M. A. & Heinemann, U. 1993. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364(6433): 164-168.

10.1038/364164a08321288
21

Yamanaka, K. and Inouye, M. 1997. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. Journal of Bacteriology 179(16): 5126-5130.

10.1128/jb.179.16.5126-5130.19979260955PMC179371
22

Zhang, Y., Burkhardt, D. H., Rouskin, S., Li, G. W., Weissman, J. S. & Gross, C. A. 2018. A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation. Molecular Cell 70(2): 274-286.e277.

10.1016/j.molcel.2018.02.03529628307PMC5910227
Information
  • Publisher :Jeju Journal of Island Sciences
  • Publisher(Ko) :제주섬과학회지
  • Journal Title :Jeju Journal of Island Sciences
  • Journal Title(Ko) :제주섬과학회지
  • Volume : 1
  • No :1
  • Pages :12-19
  • Received Date : 2024-02-15
  • Revised Date : 2024-03-11
  • Accepted Date : 2024-03-13