All Issue

2025 Vol.2, Issue 2 Preview Page

Research Article

29 August 2025. pp. 43-49
Abstract
References
1

Burton, S. A. Q. and Prosser, J. I. M. I. 2001. Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis. Society 67(7): 2952-2957. https://doi.org/10.1128/AEM.67.7.2952-2957.2001

10.1128/AEM.67.7.2952-2957.200111425707PMC92966
2

Daebeler, A., Kitzinger, K., Koch, H., Herbold, C. W., Steinfeder, M., Schwarz, J., Zechmeister, T., Karst, S. M., Albertsen, M., Nielsen, P. H., Wagner, M., & Daims, H. 2020. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. ISME Journal 14(12): 2967-2979. https://doi.org/10.1038/s41396-020-0724-1

10.1038/s41396-020-0724-132709974PMC7784846
3

Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. 2015. Complete nitrification by Nitrospira bacteria. Nature 528(7583): 504-509. https://doi.org/10.1038/nature16461

10.1038/nature1646126610024PMC5152751
4

Daims, H., Lücker, S., & Wagner, M. 2016. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends in Microbiology 24(9): 699-712. https://doi.org/10.1016/j.tim.2016.05.004

10.1016/j.tim.2016.05.00427283264PMC6884419
5

De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E., & Laanbroek, H. J. 1991. Nitrification at low pH by aggregated chemolithotrophic bacteria. Applied and Environmental Microbiology 57(12): 3600-3604. https://doi.org/10.1128/aem.57.12.3600-3604.1991

10.1128/aem.57.12.3600-3604.199116348608PMC184019
6

de Boer, W. and Laanbroek, H. J. 1989. Ureolytic nitrification at low pH by Nitrosospira spec. Archives of Microbiology 152(2): 178-181. https://doi.org/10.1007/BF00456098

10.1007/BF00456098
7

Gödde, M. and Conrad, R. 1999. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. In Biology and Fertility of Soils, 30(1-2): 33-40. https://doi.org/10.1007/s003740050584

10.1007/s003740050584
8

Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B. C., James, P., Schloter, M., Griffiths, R. I., Prosser, J. I., & Nicol, G. W. 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America 108(52): 21206-21211. https://doi.org/10.1073/pnas.1109000108

10.1073/pnas.110900010822158986PMC3248517
9

Gubry-Rangin, C., Kratsch, C., Williams, T. A., McHardy, A. C., Embley, T. M., Prosser, J. I., & Macqueen, D. J. 2015. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proceedings of the National Academy of Sciences of the United States of America 112(30): 9370-9375. https://doi.org/10.1073/pnas.1419329112

10.1073/pnas.141932911226170282PMC4522744
10

Hankinson, T. R. and Schmidt, E. L. 1988. An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Applied & Environmental Microbiology 54(6): 1536-1540. https://doi.org/10.1128/aem.54.6.1536-1540.1988

10.1128/aem.54.6.1536-1540.198816347664PMC202692
11

Hatzenpichler, R., Lebedeva, E. V., Spieck, E., Stoecker, K., Richter, A., Daims, H., & Wagner, M. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America 105(6): 2134-2139. https://doi.org/10.1073/pnas.0708857105

10.1073/pnas.070885710518250313PMC2538889
12

Hayatsu, M., Tago, K., Uchiyama, I., Toyoda, A., Wang, Y., Shimomura, Y., Okubo, T., Kurisu, F., Hirono, Y., Nonaka, K., Akiyama, H., Itoh, T., & Takami, H. 2017. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME Journal 11(5): 1130-1141. https://doi.org/10.1038/ismej.2016.191

10.1038/ismej.2016.19128072419PMC5437925
13

Heil, J., Wolf, B., Brüggemann, N., Emmenegger, L., Tuzson, B., Vereecken, H., & Mohn, J. 2014. Site-specific 15N isotopic signatures of abiotically produced N2O. Geochimica et Cosmochimica Acta 139: 72-82. https://doi.org/10.1016/j.gca.2014.04.037

10.1016/j.gca.2014.04.037
14

Herbold, C. W., Lehtovirta-Morley, L. E., Jung, M. Y., Jehmlich, N., Hausmann, B., Han, P., Loy, A., Pester, M., Sayavedra-Soto, L. A., Rhee, S. K., Prosser, J. I., Nicol, G. W., Wagner, M., & Gubry-Rangin, C. 2017. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology 19(12): 4939-4952. https://doi.org/10.1111/1462-2920.13971

10.1111/1462-2920.1397129098760PMC5767755
15

Hood-Nowotny, R., Umana, N. H.-N., Inselbacher, E., Oswald- Lachouani, P., & Wanek, W. 2010. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen in Soil. Soil Science Society of America Journal 74(3): 1018-1027. https://doi.org/10.2136/sssaj2009.0389

10.2136/sssaj2009.0389
16

Hu, H. W. and He, J. Z. 2017. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17(12): 2709-2717. https://doi.org/10.1007/s11368-017-1851-9

10.1007/s11368-017-1851-9
17

Jung, M. Y., Gwak, J. H., Rohe, L., Giesemann, A., Kim, J. G., Well, R., Madsen, E. L., Herbold, C. W., Wagner, M., & Rhee, S. K. 2019. Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. ISME Journal 13(10): 2633-2638. https://doi.org/10.1038/s41396-019-0460-6

10.1038/s41396-019-0460-631227816PMC6775971
18

Jung, M. Y., Well, R., Min, D., Giesemann, A., Park, S. J., Kim, J. G., Kim, S. J., & Rhee, S. K. 2014. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME Journal 8(5): 1115-1125. https://doi.org/10.1038/ismej.2013.205

10.1038/ismej.2013.20524225887PMC3996685
19

Kits, K. D., Jung, M. Y., Vierheilig, J., Pjevac, P., Sedlacek, C. J., Liu, S., Herbold, C., Stein, L. Y., Richter, A., Wissel, H., Brüggemann, N., Wagner, M., & Daims, H. 2019. Low yield and abiotic origin of N 2 O formed by the complete nitrifier Nitrospira inopinata. Nature Communications 10(1): 1-12. https://doi.org/10.1038/s41467-019-09790-x

10.1038/s41467-019-09790-x31015413PMC6478695
20

Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Romano, S., Albertsen, M., Stein, L. Y., Daims, H., & Wagner, M. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549(7671): 269-272. https://doi.org/10.1038/nature23679

10.1038/nature2367928847001PMC5600814
21

Kitzinger, K., Koch, H., Lücker, S., Sedlacek, C. J., Herbold, C., Schwarz, J., Daebeler, A., Mueller, A. J., Lukumbuzya, M., Romano, S., Leisch, N., Karst, S. M., Kirkegaard, R., Albertsen, M., Nielsen, P. H., Wagner, M., & Daims, H. 2018. Characterization of the first “Candidatus nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. MBio 9(4): 1-16. https://doi.org/10.1128/mBio.01186-18

10.1128/mBio.01186-1829991589PMC6050957
22

Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., Richter, A., Nielsen, P. H., Wagner, M., & Daims, H. 2014. Microbial metabolism: Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345(6200): 1052-1054. https://doi.org/10.1126/science.1256985

10.1126/science.1256985
23

Könneke, M., Bernhard, A. E., De La Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058): 543-546. https://doi.org/10.1038/nature03911

10.1038/nature03911
24

Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G., & Stein, L. Y. 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME Journal 10(8): 1836-1845. https://doi.org/10.1038/ismej.2016.2

10.1038/ismej.2016.226882267PMC5029154
25

Lebedeva, E. V., Off, S., Zumbrägel, S., Kruse, M., Shagzhina, A., Lücker, S., Maixner, F., Lipski, A., Daims, H., & Spieck, E. 2011. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiology Ecology 75(2): 195-204. https://doi.org/10.1111/j.1574-6941.2010.01006.x

10.1111/j.1574-6941.2010.01006.x
26

Lehtovirta-Morley, L. E. 2018. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiology Letters 365(9): 1-9. https://doi.org/10.1093/femsle/fny058

10.1093/femsle/fny058
27

Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I., & Nicol, G. W. 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences of the United States of America 108(38): 15892-15897. https://doi.org/10.1073/pnas.1107196108

10.1073/pnas.110719610821896746PMC3179093
28

Liu, S., Han, P., Hink, L., Prosser, J. I., Wagner, M., & Brüggemann, N. 2017. Abiotic Conversion of Extracellular NH2OH Contributes to N2O Emission during Ammonia Oxidation. Environmental Science and Technology 51(22): 13122-13132. https://doi.org/10.1021/acs.est.7b02360

10.1021/acs.est.7b02360
29

Nicol, G. W., Leininger, S., Schleper, C., & Prosser, J. I. 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology 10(11): 2966-2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x

10.1111/j.1462-2920.2008.01701.x
30

Shoun, H., Fushinobu, S., Jiang, L., Kim, S. W., & Wakagi, T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1593): 1186-1194. https://doi.org/10.1098/rstb.2011.0335

10.1098/rstb.2011.033522451104PMC3306627
31

Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., & Schleper, C. 2014. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME Journal 8(5): 1135-1146. https://doi.org/10.1038/ismej.2013.220

10.1038/ismej.2013.22024401864PMC3996696
32

Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., & Schleper, C. 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America 108(20): 8420-8425. https://doi.org/10.1073/pnas.1013488108

10.1073/pnas.101348810821525411PMC3100973
33

Van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op Den Camp, H. J. M., Kartal, B., Jetten, M. S. M., & Lücker, S. 2015. Complete nitrification by a single microorganism. Nature 528(7583): 555-559. https://doi.org/10.1038/nature16459

10.1038/nature1645926610025PMC4878690
34

Wang, B., Qin, W., Ren, Y., Zhou, X., Jung, M. Y., Han, P., Eloe-Fadrosh, E. A., Li, M., Zheng, Y., Lu, L., Yan, X., Ji, J., Liu, Y., Liu, L., Heiner, C., Hall, R., Martens-Habbena, W., Herbold, C. W., Rhee, S. keun, … Jia, Z. 2019. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal 13(12): 3067-3079. https://doi.org/10.1038/s41396-019-0493-x

10.1038/s41396-019-0493-x31462715PMC6863869
35

Wang, D., Wang, Q., Laloo, A., Xu, Y., Bond, P. L., & Yuan, Z. 2016. Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation. Scientific Reports 6(May): 1-10. https://doi.org/10.1038/srep25547

10.1038/srep2554727151247PMC4858757
36

Widdel, F. 1980. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Georg-August-Universität zu Göttingen.

37

Zhang, L. M., Hu, H. W., Shen, J. P., & He, J. Z. 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal 6(5): 1032-1045. https://doi.org/10.1038/ismej.2011.168

10.1038/ismej.2011.16822134644PMC3329103
Information
  • Publisher :Jeju Journal of Island Sciences
  • Publisher(Ko) :제주섬과학회지
  • Journal Title :Jeju Journal of Island Sciences
  • Journal Title(Ko) :제주섬과학회지
  • Volume : 2
  • No :2
  • Pages :43-49
  • Received Date : 2024-04-18
  • Revised Date : 2025-08-21
  • Accepted Date : 2025-08-21