Research Article
Burton, S. A. Q. and Prosser, J. I. M. I. 2001. Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis. Society 67(7): 2952-2957. https://doi.org/10.1128/AEM.67.7.2952-2957.2001
10.1128/AEM.67.7.2952-2957.200111425707PMC92966Daebeler, A., Kitzinger, K., Koch, H., Herbold, C. W., Steinfeder, M., Schwarz, J., Zechmeister, T., Karst, S. M., Albertsen, M., Nielsen, P. H., Wagner, M., & Daims, H. 2020. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. ISME Journal 14(12): 2967-2979. https://doi.org/10.1038/s41396-020-0724-1
10.1038/s41396-020-0724-132709974PMC7784846Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R. H., Von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., & Wagner, M. 2015. Complete nitrification by Nitrospira bacteria. Nature 528(7583): 504-509. https://doi.org/10.1038/nature16461
10.1038/nature1646126610024PMC5152751Daims, H., Lücker, S., & Wagner, M. 2016. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends in Microbiology 24(9): 699-712. https://doi.org/10.1016/j.tim.2016.05.004
10.1016/j.tim.2016.05.00427283264PMC6884419De Boer, W., Gunnewiek, P. J. A. K., Veenhuis, M., Bock, E., & Laanbroek, H. J. 1991. Nitrification at low pH by aggregated chemolithotrophic bacteria. Applied and Environmental Microbiology 57(12): 3600-3604. https://doi.org/10.1128/aem.57.12.3600-3604.1991
10.1128/aem.57.12.3600-3604.199116348608PMC184019de Boer, W. and Laanbroek, H. J. 1989. Ureolytic nitrification at low pH by Nitrosospira spec. Archives of Microbiology 152(2): 178-181. https://doi.org/10.1007/BF00456098
10.1007/BF00456098Gödde, M. and Conrad, R. 1999. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. In Biology and Fertility of Soils, 30(1-2): 33-40. https://doi.org/10.1007/s003740050584
10.1007/s003740050584Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B. C., James, P., Schloter, M., Griffiths, R. I., Prosser, J. I., & Nicol, G. W. 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings of the National Academy of Sciences of the United States of America 108(52): 21206-21211. https://doi.org/10.1073/pnas.1109000108
10.1073/pnas.110900010822158986PMC3248517Gubry-Rangin, C., Kratsch, C., Williams, T. A., McHardy, A. C., Embley, T. M., Prosser, J. I., & Macqueen, D. J. 2015. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota. Proceedings of the National Academy of Sciences of the United States of America 112(30): 9370-9375. https://doi.org/10.1073/pnas.1419329112
10.1073/pnas.141932911226170282PMC4522744Hankinson, T. R. and Schmidt, E. L. 1988. An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Applied & Environmental Microbiology 54(6): 1536-1540. https://doi.org/10.1128/aem.54.6.1536-1540.1988
10.1128/aem.54.6.1536-1540.198816347664PMC202692Hatzenpichler, R., Lebedeva, E. V., Spieck, E., Stoecker, K., Richter, A., Daims, H., & Wagner, M. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America 105(6): 2134-2139. https://doi.org/10.1073/pnas.0708857105
10.1073/pnas.070885710518250313PMC2538889Hayatsu, M., Tago, K., Uchiyama, I., Toyoda, A., Wang, Y., Shimomura, Y., Okubo, T., Kurisu, F., Hirono, Y., Nonaka, K., Akiyama, H., Itoh, T., & Takami, H. 2017. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME Journal 11(5): 1130-1141. https://doi.org/10.1038/ismej.2016.191
10.1038/ismej.2016.19128072419PMC5437925Heil, J., Wolf, B., Brüggemann, N., Emmenegger, L., Tuzson, B., Vereecken, H., & Mohn, J. 2014. Site-specific 15N isotopic signatures of abiotically produced N2O. Geochimica et Cosmochimica Acta 139: 72-82. https://doi.org/10.1016/j.gca.2014.04.037
10.1016/j.gca.2014.04.037Herbold, C. W., Lehtovirta-Morley, L. E., Jung, M. Y., Jehmlich, N., Hausmann, B., Han, P., Loy, A., Pester, M., Sayavedra-Soto, L. A., Rhee, S. K., Prosser, J. I., Nicol, G. W., Wagner, M., & Gubry-Rangin, C. 2017. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology 19(12): 4939-4952. https://doi.org/10.1111/1462-2920.13971
10.1111/1462-2920.1397129098760PMC5767755Hood-Nowotny, R., Umana, N. H.-N., Inselbacher, E., Oswald- Lachouani, P., & Wanek, W. 2010. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen in Soil. Soil Science Society of America Journal 74(3): 1018-1027. https://doi.org/10.2136/sssaj2009.0389
10.2136/sssaj2009.0389Hu, H. W. and He, J. Z. 2017. Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17(12): 2709-2717. https://doi.org/10.1007/s11368-017-1851-9
10.1007/s11368-017-1851-9Jung, M. Y., Gwak, J. H., Rohe, L., Giesemann, A., Kim, J. G., Well, R., Madsen, E. L., Herbold, C. W., Wagner, M., & Rhee, S. K. 2019. Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. ISME Journal 13(10): 2633-2638. https://doi.org/10.1038/s41396-019-0460-6
10.1038/s41396-019-0460-631227816PMC6775971Jung, M. Y., Well, R., Min, D., Giesemann, A., Park, S. J., Kim, J. G., Kim, S. J., & Rhee, S. K. 2014. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME Journal 8(5): 1115-1125. https://doi.org/10.1038/ismej.2013.205
10.1038/ismej.2013.20524225887PMC3996685Kits, K. D., Jung, M. Y., Vierheilig, J., Pjevac, P., Sedlacek, C. J., Liu, S., Herbold, C., Stein, L. Y., Richter, A., Wissel, H., Brüggemann, N., Wagner, M., & Daims, H. 2019. Low yield and abiotic origin of N 2 O formed by the complete nitrifier Nitrospira inopinata. Nature Communications 10(1): 1-12. https://doi.org/10.1038/s41467-019-09790-x
10.1038/s41467-019-09790-x31015413PMC6478695Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Romano, S., Albertsen, M., Stein, L. Y., Daims, H., & Wagner, M. 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549(7671): 269-272. https://doi.org/10.1038/nature23679
10.1038/nature2367928847001PMC5600814Kitzinger, K., Koch, H., Lücker, S., Sedlacek, C. J., Herbold, C., Schwarz, J., Daebeler, A., Mueller, A. J., Lukumbuzya, M., Romano, S., Leisch, N., Karst, S. M., Kirkegaard, R., Albertsen, M., Nielsen, P. H., Wagner, M., & Daims, H. 2018. Characterization of the first “Candidatus nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. MBio 9(4): 1-16. https://doi.org/10.1128/mBio.01186-18
10.1128/mBio.01186-1829991589PMC6050957Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S., Pelletier, E., Le Paslier, D., Spieck, E., Richter, A., Nielsen, P. H., Wagner, M., & Daims, H. 2014. Microbial metabolism: Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345(6200): 1052-1054. https://doi.org/10.1126/science.1256985
10.1126/science.1256985Könneke, M., Bernhard, A. E., De La Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437(7058): 543-546. https://doi.org/10.1038/nature03911
10.1038/nature03911Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G., & Stein, L. Y. 2016. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME Journal 10(8): 1836-1845. https://doi.org/10.1038/ismej.2016.2
10.1038/ismej.2016.226882267PMC5029154Lebedeva, E. V., Off, S., Zumbrägel, S., Kruse, M., Shagzhina, A., Lücker, S., Maixner, F., Lipski, A., Daims, H., & Spieck, E. 2011. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiology Ecology 75(2): 195-204. https://doi.org/10.1111/j.1574-6941.2010.01006.x
10.1111/j.1574-6941.2010.01006.xLehtovirta-Morley, L. E. 2018. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiology Letters 365(9): 1-9. https://doi.org/10.1093/femsle/fny058
10.1093/femsle/fny058Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I., & Nicol, G. W. 2011. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences of the United States of America 108(38): 15892-15897. https://doi.org/10.1073/pnas.1107196108
10.1073/pnas.110719610821896746PMC3179093Liu, S., Han, P., Hink, L., Prosser, J. I., Wagner, M., & Brüggemann, N. 2017. Abiotic Conversion of Extracellular NH2OH Contributes to N2O Emission during Ammonia Oxidation. Environmental Science and Technology 51(22): 13122-13132. https://doi.org/10.1021/acs.est.7b02360
10.1021/acs.est.7b02360Nicol, G. W., Leininger, S., Schleper, C., & Prosser, J. I. 2008. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology 10(11): 2966-2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x
10.1111/j.1462-2920.2008.01701.xShoun, H., Fushinobu, S., Jiang, L., Kim, S. W., & Wakagi, T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1593): 1186-1194. https://doi.org/10.1098/rstb.2011.0335
10.1098/rstb.2011.033522451104PMC3306627Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., & Schleper, C. 2014. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME Journal 8(5): 1135-1146. https://doi.org/10.1038/ismej.2013.220
10.1038/ismej.2013.22024401864PMC3996696Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A., & Schleper, C. 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences of the United States of America 108(20): 8420-8425. https://doi.org/10.1073/pnas.1013488108
10.1073/pnas.101348810821525411PMC3100973Van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., Op Den Camp, H. J. M., Kartal, B., Jetten, M. S. M., & Lücker, S. 2015. Complete nitrification by a single microorganism. Nature 528(7583): 555-559. https://doi.org/10.1038/nature16459
10.1038/nature1645926610025PMC4878690Wang, B., Qin, W., Ren, Y., Zhou, X., Jung, M. Y., Han, P., Eloe-Fadrosh, E. A., Li, M., Zheng, Y., Lu, L., Yan, X., Ji, J., Liu, Y., Liu, L., Heiner, C., Hall, R., Martens-Habbena, W., Herbold, C. W., Rhee, S. keun, … Jia, Z. 2019. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME Journal 13(12): 3067-3079. https://doi.org/10.1038/s41396-019-0493-x
10.1038/s41396-019-0493-x31462715PMC6863869Wang, D., Wang, Q., Laloo, A., Xu, Y., Bond, P. L., & Yuan, Z. 2016. Achieving Stable Nitritation for Mainstream Deammonification by Combining Free Nitrous Acid-Based Sludge Treatment and Oxygen Limitation. Scientific Reports 6(May): 1-10. https://doi.org/10.1038/srep25547
10.1038/srep2554727151247PMC4858757Widdel, F. 1980. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Georg-August-Universität zu Göttingen.
Zhang, L. M., Hu, H. W., Shen, J. P., & He, J. Z. 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME Journal 6(5): 1032-1045. https://doi.org/10.1038/ismej.2011.168
10.1038/ismej.2011.16822134644PMC3329103- Publisher :Jeju Journal of Island Sciences
- Publisher(Ko) :제주섬과학회지
- Journal Title :Jeju Journal of Island Sciences
- Journal Title(Ko) :제주섬과학회지
- Volume : 2
- No :2
- Pages :43-49
- Received Date : 2024-04-18
- Revised Date : 2025-08-21
- Accepted Date : 2025-08-21
- DOI :https://doi.org/10.23264/JJIS.2025.2.2.043


Jeju Journal of Island Sciences







